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Abstract

This comprehensive textbook provides a practical guide to advanced laboratory tech­

niques and scientific thinking for physics students. It covers experimental design, data 

analysis, statistical methods, and scientific writing, with hands-on examples and model 

experiments.
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1. Bringing Experiment to the Foreground

This book grows from a simple conviction: the principles of experimentation deserve 

center stage in introductory physics labs.

Physics laboratories offer the perfect setting for this approach. Their systems and 

theories strike that ideal balance—complex enough to be meaningful, yet simple 

enough that students can see the bones of experimental method beneath. The beauty 

of focusing on experimental principles is that it serves everyone in the room—future 

physicists certainly, but equally those bound for engineering, medicine, business, or 

the arts. Everyone benefits from understanding how we know what we claim to 

know.

The experimental landscape has transformed dramatically in recent decades. New 

instruments have played their part, but the computing revolution has fundamentally 

reimagined what’s possible. Analyses that once demanded weeks of calculation now 

happen instantaneously. Computer-controlled apparatus adjusts in real-time. Data 

visualization reveals patterns invisible to earlier generations of scientists.

Yet beneath these technological advances, the fundamental principles remain 

unchanged. In fact, understanding these principles may matter more now than ever 

before. Modern lab setups can create a kind of experimental black box—data flows in, 

answers flow out, but the phenomena themselves remain hidden behind layers of 

processing. Without a deep understanding of what happens at each stage, invisible 

flaws can produce seemingly valid but meaningless results. Surrendering 

experimental thinking to computers is a perilous path.

The textbook unfolds naturally through this territory. This carefully sequenced 

approach helps students navigate both the technological advances transforming 

modern labs and the timeless principles that ground experimental work. Chapter 1 

establishes our experimental-centered approach to physics laboratories. Chapters 2-4 

build the essential knowledge foundation—measurement theory, statistical thinking, 

and scientific methodology. Chapter 5 walks through practical experiment design 

January 01, 2025 1 of 122



| Veillette, 2025

with clarity and purpose, while Chapter 6 shows how to evaluate experimental 

results thoughtfully. Chapter 7 guides students through communicating their work 

effectively.

The appendices offer deeper dives where needed: Appendix 1 provides rigorous 

mathematical foundations for the Gaussian distribution and statistical analysis; 

Appendix 2 details the principle of least squares and its applications in data fitting; 

Appendix 3 introduces modern computational tools through Python and Jupyter for 

data analysis; and Appendix 4 presents a complete model experiment demonstrating 

the full experimental journey—from design through execution to final reporting.

Together, these resources bridge theoretical foundations with practical 

implementation, equipping students with both conceptual understanding and 

technical skills for modern experimental physics.
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2. Approach to Laboratory Work

Important

Beyond Physics: A Universal Approach

While this textbook begins in physics labs, its scope extends far beyond. It serves 

as an introduction to experimental methodology that applies across all fields 

where we systematically study our world.

Students taking introductory physics may follow various career paths—some 

continuing in physics research, others pursuing different sciences, and many entering 

non-scientific fields entirely. Regardless of path, learning fundamental experimental 

principles provides valuable skills for everyone.

The text adopts a broad definition of experimentation: the complete process of 

identifying something in our world to study, gathering information about it, and 

interpreting what we find. This comprehensive view encompasses everything from 

molecular biologists manipulating DNA to market researchers surveying consumer 

toothpaste preferences.

Tip

Empowering Investigators and Informed Consumers

This book aims to serve anyone who needs to investigate aspects of the world 

around them or evaluate scientific claims made by others. It provides a foundation 

in experimental thinking that proves useful across disciplines and contexts, 

helping readers become both better investigators and more critical consumers of 

scientific information.

2.a. Understanding Scientific Knowledge and Measurement

Note

Why Everyone Needs Scientific Literacy

One might question why everyone, not just scientists, should understand how we 

acquire knowledge about our world. The answer lies in how experimentation 

permeates our lives, whether we recognize it or not.

Even non-scientists frequently need to evaluate experimental information in daily 

life. Professionals may need to compare competing equipment specifications, while 

ordinary citizens form opinions on issues like nuclear power safety, food additives, 

environmental concerns like global warming, or how monetary policy affects 

unemployment. These situations require understanding scientific experimental 

processes and critically assessing information reliability.
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To do this effectively, we must first comprehend measurement itself. Crucially, we 

must recognize that measurements cannot be exact. Uncertainty in measurements 

stems from instrumental limitations or statistical variations in the measured quantity. 

Acknowledging this uncertainty and knowing how to estimate it allows us to 

properly evaluate measured values.

Warning

Avoiding Misconceptions About Scientific Claims

Beyond understanding measurement, we must address widespread 

misconceptions about scientific statements. These misunderstandings typically 

involve the authority or reliability of scientific claims. Views range from blindly 

accepting “scientifically proven” facts as infallible to dismissing all science as 

“mere theories” that can be ignored.

Neither extreme position is correct. Public discourse improves when we can 

appropriately evaluate scientific and technical statements on a credibility scale. 

Before examining how information is gathered, we must appreciate a vital but often 

neglected point essential for proper understanding.

Note

System vs. Model: A Crucial Distinction

This critical distinction separates the actual world being examined (the system 

under study) from the concepts and ideas (the model) we create after observing 

the system. While understanding measurements is relatively straightforward, the 

model concept requires elaboration.

We create ideas to represent observed system properties concisely, enabling efficient 

communication with shared understanding. For instance, if we were Earth’s first 

explorers, we might repeatedly encounter similar fruit. Rather than describing each 

sighting separately as unrelated events, we could create the abstract concept 

“banana” with specific properties, facilitating more efficient communication about 

future meals. Beyond simple examples, models are used extensively and 

sophisticatedly throughout society.

In everyday communication, we often forget that many statements concern concepts 

rather than actual reality. Usually, this distinction doesn’t matter, but sometimes it is 

crucial, and ignoring it leads to serious errors.

Caution

The Danger of Confusing Models with Reality

The danger arises because these two aspects of external knowledge differ 

fundamentally. Observations of our system belong to reality and (despite 
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necessary uncertainty) can be essentially indisputable. No reasonable person 

would question that the Atlantic Ocean’s width exceeds a living room’s length. 

This potential incontrovertibility of observational statements can misleadingly 

suggest all scientific statements contain absolute truths.

Note

The Meaning of “Proof” in Science

A common misconception is that scientists “prove” theories in an absolute sense. 

In reality, scientific conclusions are always provisional - they represent our best 

current understanding supported by evidence, but remain subject to revision. 

When scientists say data “supports” or “confirms” a theory, they mean the 

evidence aligns with the theory’s predictions, not that it has achieved 

mathematical certainty. This distinction between provisional scientific knowledge 

and absolute proof is crucial for properly evaluating claims about our world.

Conceptual statements differ fundamentally from observations - they are human-

created ideas designed to represent systems, not absolute truths. While carefully 

constructed, these models remain provisional and improvable, unlike direct 

observations which can provide more concrete evidence.

Misunderstanding the complementary roles of observation and concept causes much 

confusion in scientific debates. Climate scientists often face this when their models 

predict warming trends that don’t immediately match year-to-year observations, 

forgetting that climate models represent long-term patterns rather than short-term 

weather events.

Note

Categorizing Scientific Statements

All scientific statements fall into distinct categories: observations about systems, 

statements about models, or statements about system-model relationships. 

Analyzing scientific claims within these categories helps form accurate 

judgments.

When making scientific statements ourselves, we should use precise language. We 

still hear renowned scientists announce finding a “correct theory,” which may be clear 

to those who understand such conventional language but can mislead non-scientists. 

Those making scientific statements should carefully monitor their language to 

prevent misunderstanding.

2.b. Purpose of Physics Laboratory

Note

Physics Labs as Training Grounds for Experimental Skills
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What connection exists between physics laboratories and broader educational 

goals? Though physics teaching labs serve a familiar function, we might wonder 

how standard laboratory experiments can introduce general experimental 

principles. The answer lies not in the experiments themselves but in our approach 

to them.

As we’ll explore experimental methods further, it helps to view the subject under 

investigation as a system—any defined entity functioning in a specific way. We can 

influence systems through inputs (our control methods) and observe outputs (the 

system’s measurable functions).

Consider various examples: A climate scientist might view Earth’s climate as a 

system with inputs like greenhouse gas concentrations and solar radiation, while 

outputs include global temperature and precipitation patterns. Though we desire 

specific climate outcomes, we cannot directly control them—we must work through 

inputs, with complex relationships that climate models help us understand.

Some systems, while still complex, allow more successful control. An electrical power 

grid has inputs like generator operation and pricing, with outputs including power 

delivery and service reliability. These outputs remain determined by the system itself, 

not by direct management control.

How does this relate to introductory physics labs? Why not immediately address 

important issues like mercury contamination in fish or fossil fuel impacts on climate? 

The challenge is that these represent extremely complex problems with disputed 

evidence and interpretation. Developing skills through simpler systems provides 

necessary preparation.

An automobile engine represents a moderately complex system with inputs like fuel 

supply and ignition timing, and outputs including RPM and exhaust composition. The 

relationships become more predictable, though changing one input still affects 

multiple outputs.

A simple pendulum offers an even clearer example—a system with minimal 

components (string, mass, support) and straightforward inputs (string length, initial 

conditions) and outputs (frequency, amplitude). The connections between inputs and 

outputs are direct and reproducible, making fundamental experimental principles 

visible.

Tip

The Value of Simple Systems

This reveals the value of introductory physics laboratories. Viewing a pendulum 

merely as “just a pendulum” leads to boredom. However, seeing it as a simplified 

version of real-world systems provides an excellent simulation environment. The 
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physics laboratory offers practice with simple systems to develop expertise 

applicable to more complex real-world situations.

The approach matters significantly. Following rigid instructions yields limited 

benefits. Since real-world experimental situations vary enormously—from biological 

sciences dominated by random fluctuations to astronomy with precise measurement 

but limited control—we need general experimental principles applicable across 

domains.

Traditional laboratory approaches often prove inappropriate for this purpose. We 

should avoid viewing experiments as exercises in reproducing “correct” answers. 

Instead, we should objectively assess system properties and accept results as they 

come. Rather than following prescribed procedures, we must develop confidence in 

making independent experimental decisions—a crucial skill in real-world situations 

where guidance is rarely available.

Experiment planning deserves significant emphasis, as this stage requires substantial 

skill. Preliminary planning isn’t a distraction from measurement but essential 

preparation requiring dedicated time before measurements begin.

Working within resource constraints develops important skills. Professional 

experimentation always faces limitations, and optimizing results within these 

boundaries represents a key experimental skill. Time restrictions and imperfect 

apparatus shouldn’t be seen as defects but as realistic challenges. Good experimental 

evaluation requires separating valuable measurements from errors and uncertainties. 

Experimenters must identify error sources independently and evaluate residual 

uncertainty accurately—skills acquired only through realistic working conditions.

Laboratory time becomes most productive when experiments are approached as 

independent problem-solving opportunities. Though errors will occur, learning from 

direct personal experience exceeds rigidly following established procedures. 

Experiment outcomes matter less than learning, though skill development requires 

seriously pursuing optimal results.

Clear communication of laboratory findings is as crucial as the research itself. 

Scientific work gains value only when effectively shared, making reporting a core 

professional skill beyond mere writing. Thorough documentation and constructive 

critique create vital learning opportunities that reveal their full benefit in retrospect.

2.c. Glossary

2.d. Problems
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Exercise 1: 

For each scenario, identify whether the statement refers to a system or a model: a) 

The temperature readings from a weather station b) The equations describing 

planetary motion c) A computer simulation of protein folding d) The actual 

protein molecules in a test tube

Exercise 2: 

Design a simple experiment to test how string length affects a pendulum’s period. 

Include: a) The system under study b) Input variables you’ll control c) Output 

variables you’ll measure d) Potential sources of uncertainty

Exercise 3: 

Find a scientific claim in a news article and analyze it by: a) Identifying the 

system being studied b) Describing how measurements were likely made c) 

Assessing potential sources of uncertainty d) Evaluating whether the conclusions 

follow from the evidence

Exercise 4: 

A student measures a block’s length five times: 10.2 cm, 10.4 cm, 10.3 cm, 10.5 cm, 

10.3 cm a) Calculate the mean length b) Estimate the uncertainty range c) Explain 

possible sources of variation d) Suggest how to reduce uncertainty

Exercise 5: 

Evaluate this statement: “The model predicted temperatures within 2°C of actual 

measurements.” a) What does this tell us about the model’s accuracy? b) What 

additional information would help assess the model’s quality? c) How might the 

model be improved? d) Why can’t we say the model is “proven”?

Exercise 6: 

Choose a common household appliance and analyze it as an experimental system: 

a) Identify its key components b) Describe inputs you can control c) Describe 

outputs you can measure d) Explain how you might model its behavior
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3. Measurement and Uncertainty

3.a. Understanding the Measuring Process

When you can measure what you are speaking about and express it in numbers, 

you know something about it; but when you cannot express it in numbers, your 

knowledge remains meager and unsatisfactory. – Lord Kelvin

Measurement lies at the heart of our scientific understanding. Though perhaps 

overstated, this sentiment captures an essential truth - proper measurement forms the 

foundation of meaningful experimentation.

Note

At its core, measurement involves comparing an object or phenomenon with 

some reference standard. These reference standards (meters, kilograms, seconds, 

etc.) must be universally agreed upon, which is why international organizations 

establish and maintain measurement standards.

Let’s begin with a simple example to understand the fundamental nature of 

measurement. Imagine measuring the height of a coffee mug with a ruler marked in 

millimeters. You might report “87 mm,” but does this mean the mug is exactly 

87.00000… mm tall? Of course not. What you’re really doing is determining that the 

height falls within some interval - perhaps between 86.5 mm and 87.5 mm.

Through this dual process of approaching from above and below, we identify an 

interval - the smallest range within which we’re confident the true value lies. This 

reveals measurement’s essential nature: we don’t determine exact values but rather 

intervals of possibility.

Important

When reporting measurements, we must specify both the central value and the 

interval width. This determination requires careful judgment based on numerous 

factors: scale precision, lighting conditions, object definition, visual acuity, and 

more.

We must assess each situation individually rather than following oversimplified rules 

(like assuming uncertainty equals half the smallest scale division). A well-defined 

object under perfect conditions might allow precision well beyond the smallest 

marked division, while a poorly defined object might create uncertainty spanning 

several divisions.

3.b. Understanding Digital Readouts and Rounding

Digital instruments present their own interpretive challenges. When a digital 

multimeter displays “3.82 V,” what exactly does this mean? The answer depends on 

the instrument’s design.

January 01, 2025 9 of 122



| Veillette, 2025

Tip

Most commonly, the reading indicates the value falls between 3.815 V and 3.825 V 

- the instrument rounds to the nearest displayed digit.

However, some digital timers might operate differently, showing “10:15” for any time 

between exactly 10:15:00 and 10:15:59. Each instrument type requires understanding 

its specific operation.

This highlights a broader concept: rounding introduces its own form of uncertainty. 

When we write 𝜋 = 3.14, we understand this isn’t exactly true. Rather, we mean the 

value lies between 3.135 and 3.145.

Warning

“Rounding uncertainty” may seem trivial, but it can significantly impact 

calculations, especially when:

1. Many rounded values accumulate errors throughout a calculation

2. Two nearly equal values are subtracted, making relative errors much larger

3. High powers are involved, amplifying small errors

With modern calculators, it’s wise to maintain extra digits throughout calculations, 

rounding appropriately only at the final step. Similarly, statements like “measured to 

the nearest millimeter” inadequately convey measurement uncertainty, as they 

establish only minimum bounds for the measurement interval.

3.c. Absolute and Relative Uncertainty

Measurements should represent the range within which we believe the true value 

lies. For instance, we might determine a tabletop’s length lies between 152.7 cm and 

153.1 cm. While this interval representation is entirely valid, we often restate it as 

152.9 ± 0.2 cm.

This uncertainty value (±0.2 cm) represents the absolute uncertainty of our 

measurement. However, the significance of any uncertainty depends on the 

measurement’s magnitude. An uncertainty of ±0.2 cm would be:

Context Impact of ±0.2 cm

Measuring microchip components Substantial

Measuring furniture Acceptable

Measuring astronomical distances Negligible

Table 1:  Impact of Uncertainty in Different Contexts

To better evaluate a measurement’s quality, we use relative uncertainty, defined as:

Relative Uncertainty = Absolute Uncertainty
Measured Value

(1)
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For our tabletop example:

Relative Uncertainty = 0.2  cm
152.9  cm

= 0.0013  or 0.13% (2)

Note

This relative value provides a more meaningful assessment of precision. We often 

call this the precision of our measurement. Absolute uncertainty carries the same 

units as the measurement itself, while relative uncertainty is a dimensionless 

ratio.

3.d. Identifying Systematic Errors

The uncertainties discussed so far arise from natural limitations in measurement 

processes. However, another category - systematic errors - affects all measurements 

in a consistent way.

These systematic errors, particularly calibration errors, require vigilance. Always 

check instrument zeros before measurement and verify calibration when possible.

Warning

Don’t be misled by sophisticated digital displays with multiple “precise” digits. 

When measuring current, all ammeters introduce their own internal resistance 

into the circuit. This resistance creates a voltage drop that alters the actual 

current flowing through the circuit, meaning the displayed current differs from 

what would flow without the meter.

For example, a digital multimeter might display a “stable” current reading of 1.23 

A, but the actual circuit current could be significantly different due to the meter’s 

internal resistance. High-quality meters minimize this effect with very low 

internal resistance (often called “burden voltage”), but it can never be completely 

eliminated.

Similarly, when measuring voltage, the meter draws some current to operate, 

potentially affecting the circuit’s behavior. Always consider how your measuring 

instrument might be altering the very quantity you’re trying to measure.

Approach all instruments with healthy skepticism, recognizing that:

1. Displayed precision often exceeds actual accuracy

2. The act of measurement can change the system being measured

3. Understanding instrument specifications (like internal resistance) is crucial 

for proper interpretation

3.e. Calculating Uncertainty in Derived Quantities

Rarely does a single measurement complete our work. Usually, we need to calculate 

some quantity based on multiple measurements or apply mathematical operations to 

our measured values.
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When calculating uncertainties in derived quantities, we will focus on finding the 

maximum possible uncertainty by considering the absolute values of all component 

uncertainties. This approach ensures we account for the worst-case scenario where 

all uncertainties combine to produce the largest possible error in our final result.

3.f. Uncertainty in Single-Variable Functions

Consider a measured quantity 𝑥 with uncertainty ±𝛿𝑥, and a calculated result 𝑧 =
𝑓(𝑥). The maximum possible uncertainty in 𝑧 is determined by considering how 

much 𝑧 could change when 𝑥 varies by ±𝛿𝑥.

For example, if 𝑧 = 𝑥
𝑥2+4 :

𝛿𝑧 = | 4 − 𝑥2

(𝑥2 + 4)2 | 𝛿𝑥 (3)

Let’s examine several common function types:

3.f.i. Powers and Roots:

This reveals an important principle: the relative uncertainty in the result equals the 

relative uncertainty in the measurement multiplied by the power. This applies to both 

positive powers (multiplication) and negative powers (division/roots).

3.f.ii. Exponential Functions:

3.f.iii. Logarithmic Functions:

3.f.iv. Trigonometric Functions:

3.g. Uncertainty in Multi-Variable Functions

When dealing with functions of multiple variables, we calculate the maximum 

possible uncertainty by taking the sum of the absolute values of all contributing 

uncertainties. This approach ensures we account for the worst possible case where all 

uncertainties combine to maximize the final uncertainty.

3.g.i. Sum and Difference of Variables:

Figure 1:  Interactive demonstration of uncertainty propagation in addition and 

subtraction.

3.g.ii. Products and Quotients:

3.h. General Approach for Multi-Variable Functions

3.h.i. Complex Functions:

For more complex functions, break them down into simpler components and apply 

the chain rule, always using absolute values to ensure maximum uncertainty:

3.i. Understanding Significant Figures: Purpose Over Rules

When working with measurements, significant figures serve a critical purpose that 

goes beyond mere rule-following. They communicate the quality and reliability of 

your measurements to others. While textbooks often present lengthy lists of rules 

about significant figures, it’s more valuable to understand their fundamental purpose.
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At their core, significant figures represent the digits that are known with 

certainty, plus one additional digit that represents your best estimate. This 

approach emerges naturally from the measurement process itself.

Consider how you might record a measurement from a graduated cylinder. When the 

liquid level falls between markings, you don’t simply write down the nearest mark. 

Instead, you estimate to one digit beyond what the scale directly shows. That 

estimated digit—the last significant figure—carries valuable information about your 

measurement.

Rather than memorizing a complex set of rules about zeroes and calculations, focus 

first on the fundamental principle: significant figures reflect the precision of 

measurement. When you understand this purpose, many of the rules become 

intuitive rather than arbitrary.

# Let's write a simple function to estimate significant figures in a 

measurement

def count_sig_figs(measurement_str):

    """Estimate the number of significant figures in a measurement"""

    # Remove any units that might be present

    measurement_str = measurement_str.split()[0]

    # Handle scientific notation

    if 'e' in measurement_str.lower():

        base, exponent = measurement_str.lower().split('e')

        return count_sig_figs(base)

    # Count significant digits according to basic rules

    digits = ''.join(c for c in measurement_str if c.isdigit())

    if '.' in measurement_str:

        # With decimal point, trailing zeros are significant

        # Remove leading zeros

        digits = digits.lstrip('0')

        return len(digits)

    else:

        # Without decimal point, trailing zeros might not be significant

        # This is ambiguous without more context

        digits = digits.lstrip('0')

        # Remove trailing zeros as they're ambiguous

        digits = digits.rstrip('0')

        return len(digits)

# Test with some examples

examples = ["12.34", "0.0056", "1200", "1200.0", "0.1200"]

for example in examples:

    print(f"Measurement: {example}, Significant figures: 

{count_sig_figs(example)}")

When propagating significant figures through calculations, focus on mastering the 

multiplication rule first:
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• The result of multiplication or division should have the same number of 

significant figures as the measurement with the fewest significant figures.

Other rules for addition, logarithms, and special functions become easier to learn 

once you’ve established this foundation.

3.i.i. A Practical Approach to Zeroes:

Zeroes often cause the most confusion when determining significant figures. Instead 

of memorizing rules, consider where the number came from:

• A measurement of 4.70 mL from a graduated cylinder has three significant 

figures because you estimated the last digit (confirming zero tenths)

• A measurement of 4.7 mL has two significant figures, indicating you didn’t 

estimate beyond the tenths place

• A measurement of 470 mL is ambiguous without context—it could have two or 

three significant figures

When teaching or learning significant figures, focusing on their purpose—

communicating measurement quality—provides a more meaningful framework than 

simply memorizing rules. This understanding helps you make appropriate judgments 

when recording and working with experimental data.

Calculations often produce more digits than are justified by our measurement 

precision. We must quote results sensibly.

3.j. Glossary

3.k. Problems

Exercise 7: 

I measure a window pane’s width between 68.3 cm and 68.9 cm. Express this as a 

central value with uncertainty, and calculate the relative uncertainty.

Exercise 8: 

A digital scale displays 235.8 g when weighing a sample. If the scale rounds to the 

nearest 0.1 g, what is the absolute uncertainty?

Exercise 9: 

If my measuring tape has absolute uncertainty ±0.5 mm, what’s the shortest 

distance I can measure while maintaining relative uncertainty below 0.5%?
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Exercise 10: 

I measure the dimensions of a rectangular sheet as (25.4 ± 0.2)  cm × (18.6 ±
0.2)  cm. What is the absolute uncertainty in the calculated area?

Exercise 11: 

A capacitance value is calculated using 𝐶 = 𝜀0𝐴
𝑑  with measurements:

• Area 𝐴 = (0.025 ± 0.001) m2

• Distance 𝑑 = (0.5 ± 0.02)  mm
• 𝜀0 = 8.85 × 10−12  F \/ m (exact)

Calculate the value and uncertainty of 𝐶 .

Exercise 12: 

When determining wave velocity using 𝑣 = 𝜆𝑓 , I measure wavelength 𝜆 =
(0.75 ± 0.05)  m and frequency 𝑓 = (440 ± 5)  Hz. Find the absolute and 

relative uncertainty in velocity.

Exercise 13: 

A value is reported as 583.2417 ± 0.15. Rewrite this with appropriate significant 

figures.

Exercise 14: 

The resistance of a wire is measured at two temperatures:

• 𝑅1 = (125.3 ± 0.4) Ω at 𝑇1 = 20° C
• 𝑅2 = (138.1 ± 0.4) Ω at 𝑇2 = 50° C

Calculate the temperature coefficient of resistance and its uncertainty using 𝛼 =
𝑅2−𝑅1

𝑅1(𝑇2−𝑇1) .
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4. Statistics of Measurement

4.a. Understanding Random Variation

When we make measurements, we often observe that repeated measurements of the 

same quantity show random variations. This is a fundamental aspect of experimental 

science that we must understand and account for.

Note

These variations can arise from many sources:

• Environmental fluctuations (temperature, pressure, humidity changes)

• Instrument limitations (finite resolution, electronic noise)

• Human factors (reaction time variations, reading parallax)

• Quantum effects (in some cases, such as radioactive decay)

Consider measuring the radioactivity of a sample. Even with perfect equipment, the 

number of counts in a fixed time interval will vary randomly due to the inherent 

stochastic nature of radioactive decay. Similarly, optical measurements might show 

fluctuations due to air currents causing refractive index variations or thermal effects 

causing mechanical instabilities in the apparatus.

4.b. The Gaussian Distribution

When we make many measurements of the same quantity, the results often follow a 

bell-shaped curve known as the Gaussian or normal distribution. This distribution is 

fundamental to understanding measurement uncertainty.

The mathematical form of the Gaussian distribution is:

𝑦 = 1
𝜎
√

2𝜋
𝑒− (𝑥−𝜇)2

2𝜎2 (4)

where 𝜇 is the population mean and 𝜎 is the population standard deviation.

These percentages are crucial for understanding measurement uncertainty. The 

68-95-99.7 rule (sometimes called the empirical rule) provides a quick way to assess 

the likelihood that a measurement falls within certain bounds of the true value.

This distribution allows us to make meaningful statements about our measurements. 

For example, if we measure a length multiple times and find a mean of 10.5 cm with a 

standard deviation of 0.1 cm, we can say:

Important

We are approximately 68% confident that any single measurement will fall 

between 10.4 cm and 10.6 cm, and 95% confident it will fall between 10.3 cm and 

10.7 cm.

4.c. Sample Statistics and Population Parameters
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When we make measurements, we’re typically working with a sample from a larger 

population of possible measurements. Understanding the relationship between 

sample statistics and population parameters is essential.

The sample mean is calculated as:

̄𝑥 = 1
𝑁

∑
𝑁

𝑖=1
𝑥𝑖 (5)

The sample standard deviation is:

𝑠 = √∑𝑁
𝑖=1 (𝑥𝑖 − ̄𝑥)2

𝑁 − 1
(6)

where 𝑁  is the sample size and 𝑥𝑖 are individual measurements.

Note the (𝑁 − 1) in the denominator, known as Bessel’s correction, which provides 

an unbiased estimate of the population standard deviation.

The standard error of the mean tells us how precisely we’ve determined the 

population mean. As our sample size increases, this uncertainty decreases as 1/
√

𝑁 .

Warning

Don’t confuse standard deviation (variation in individual measurements) with 

standard error (uncertainty in the mean). The standard deviation describes the 

spread of the data, while the standard error describes how precisely we know the 

mean.

4.c.i. Distinction Between Standard Deviation and Standard Error:

This distinction is crucial and frequently misunderstood:

• Standard Deviation (𝑠): Describes the variability of individual measurements 

around the sample mean. It tells us about the inherent scatter in our data.

• Standard Error of the Mean (𝑠𝑚 = 𝑠/
√

𝑁 ): Describes the uncertainty in our 

estimate of the population mean. It tells us how precisely we know the “true” 

value.

For example, if we measure the same quantity 25 times and get 𝑠 = 2.0 units:

• The standard deviation remains 2.0 units (describing individual measurement 

scatter)

• The standard error of the mean is 2.0/
√

25 = 0.4 units (our uncertainty in the 

mean)

4.d. Propagation of Statistical Uncertainty

When we calculate derived quantities from multiple measurements, we need to 

understand how the uncertainties combine. The propagation formulas depend on 

whether we’re dealing with estimated uncertainties or statistical uncertainties.
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4.d.i. General Error Propagation Rules:

For a function 𝑧 = 𝑓(𝑥, 𝑦) where 𝑥 and 𝑦 are independent variables with standard 

deviations 𝜎𝑥 and 𝜎𝑦:

𝜎2
𝑧 = (𝜕𝑓

𝜕𝑥
)

2

𝜎2
𝑥 + (𝜕𝑓

𝜕𝑦
)

2

𝜎2
𝑦 (7)

Note

These rules assume the measurements are independent and the uncertainties are 

random (not systematic). For systematic errors, the propagation rules are 

different.

4.d.ii. Statistical vs. Estimated Uncertainties:

When combining different types of uncertainties (e.g., some estimated, some 

statistical), we need to ensure compatibility. If one uncertainty represents a 68% 

confidence interval (1 standard deviation) and another represents outer limits (∼100% 

confidence), they cannot be directly combined using the standard propagation 

formulas.

4.e. Central Limit Theorem and Sampling

The Central Limit Theorem explains why the Gaussian distribution is so prevalent in 

measurement science. It states that the distribution of sample means approaches a 

normal distribution as the sample size increases, regardless of the shape of the 

original population distribution.

This theorem justifies our use of Gaussian statistics even when individual 

measurements might not follow a perfect Gaussian distribution.

4.f. Identifying and Handling Outliers

Sometimes our measurements include values that seem unusually different from the 

others. These outliers require careful consideration and systematic analysis.

4.f.i. Chauvenet’s Criterion:

Chauvenet’s criterion provides a statistical method for identifying potential outliers. 

The criterion states that a measurement should be rejected if the probability of 

obtaining a deviation as large or larger is less than 1/(2𝑁), where 𝑁  is the total 

number of measurements.

Procedure for Chauvenet’s Criterion:

1. Calculate the sample mean ( ̄𝑥) and standard deviation (𝑠)

2. For each measurement 𝑥𝑖, calculate the deviation: 𝑑𝑖 = | 𝑥𝑖 − ̄𝑥 |
3. Express this as a number of standard deviations: 𝑡𝑖 = 𝑑𝑖/𝑠
4. Find the probability that a measurement would deviate by 𝑡𝑖 or more standard 

deviations (using Gaussian tables)
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5. If this probability is less than 1/(2𝑁), the measurement is a candidate for 

rejection

Example: For 𝑁 = 10 measurements, reject if probability < 0.05 (about 2𝜎) For 𝑁 =
20 measurements, reject if probability < 0.025 (about 2.2𝜎)

Important Guidelines for Outlier Rejection:

1. Never reject data simply because it doesn’t fit expectations

2. Check for obvious experimental errors first (misreading, equipment 

malfunction)

3. Apply statistical criteria systematically, not arbitrarily

4. Document all rejected data with reasoning

5. Remember that outliers sometimes indicate important physics

4.f.ii. Systematic Approach to Outliers:

When handling potential outliers, follow this systematic approach:

1. Verify the measurement was recorded correctly

2. Check for obvious experimental problems (equipment malfunction, 

environmental disturbance)

3. Apply statistical assessment (such as Chauvenet’s criterion)

4. Document thoroughly the reasoning for any rejected measurements

5. Never reject data simply because it doesn’t fit expectations

The probability guidelines from the Gaussian distribution help us make these 

decisions:

• Outside 2𝜎 limits: 5% probability (might be legitimate outlier)

• Outside 3𝜎 limits: 0.3% probability (likely candidate for rejection)

• Outside 4𝜎 limits: 0.006% probability (very likely experimental error)

4.g. Confidence Intervals and Uncertainty Statements

Understanding how to make proper uncertainty statements is crucial for 

communicating experimental results.

4.g.i. Confidence Intervals:

A confidence interval provides a range of values that likely contains the true 

population parameter. For a 95% confidence interval of the mean:

CI95% = ̄𝑥 ± 1.96 × 𝑠√
𝑁

(8)

This means we’re 95% confident the true population mean lies within this range.

4.g.ii. Proper Uncertainty Statements:

When reporting results:
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• 68% confidence: ̄𝑥 ± 𝑠𝑚 (1 standard error)

• 95% confidence: ̄𝑥 ± 1.96 × 𝑠𝑚 (≈ 2 standard errors)

• 99.7% confidence: ̄𝑥 ± 3 × 𝑠𝑚 (3 standard errors)

4.h. Sample Size Effects

The size of our sample dramatically affects the reliability of our statistical estimates.

4.h.i. Effect on Standard Error:

The standard error of the mean decreases as 1/
√

𝑁 :

• To halve the uncertainty in the mean, need 4 times as many measurements

• To reduce uncertainty by factor of 10, need 100 times as many measurements

4.h.ii. Reliability of Standard Deviation Estimates:

For small samples, our estimate of the population standard deviation is quite 

uncertain. The standard deviation of the standard deviation is approximately:

𝜎𝑠 ≈ 𝜎
√2(𝑛 − 1)

(9)

This means:

• With 𝑁 = 5: our 𝑠 estimate has ∼35% uncertainty

• With 𝑁 = 10: our 𝑠 estimate has ∼25% uncertainty

• With 𝑁 = 25: our 𝑠 estimate has ∼15% uncertainty

Minimum Sample Size Guidelines:

• For meaningful statistics: 𝑁 ≥ 10
• For reliable standard deviation estimates: 𝑁 ≥ 20
• For precise confidence intervals: 𝑁 ≥ 30

4.i. Combining Different Types of Uncertainty

In practice, we often need to combine uncertainties that have different statistical 

meanings (e.g., some estimated, some statistical).

4.i.i. Making Uncertainties Compatible:

If combining a statistically-based uncertainty (68% confidence) with an estimated 

range uncertainty (∼100% confidence), we need to make them compatible:

• Convert estimated range to ∼68% confidence by multiplying by 0.67

• Or convert statistical uncertainty to ∼100% range by multiplying by 1.5

4.i.ii. Root Sum of Squares:

For independent uncertainties of the same confidence level:

𝜎𝑡𝑜𝑡𝑎𝑙 = √𝜎2
1 + 𝜎2

2 + 𝜎2
3 + … (10)

This assumes the uncertainties are:
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• Independent (not correlated)

• Random (not systematic)

• Of the same confidence level

4.j. Distribution Shapes and Assumptions

While we often assume Gaussian distributions, real measurements may deviate from 

this ideal.

4.j.i. When Gaussian Assumptions Fail:

• Small number statistics: For counting experiments with few counts, use 

Poisson statistics

• Skewed distributions: May occur with certain measurement processes

• Multiple peaks: Could indicate multiple measurement modes or systematic 

effects

4.j.ii. Checking Gaussian Assumptions:

Simple tests for Gaussian behavior:

• Plot histogram of residuals from the mean

• Check if ∼68% fall within 1 standard deviation

• Look for systematic patterns in the data

4.k. Practical Measurement Strategy

A well-planned measurement strategy can minimize uncertainties and improve data 

quality.

Before starting measurements:

1. Estimate expected uncertainty based on instrument resolution and known 

fluctuations

2. Determine required sample size based on target precision

3. Choose measurement sequence to minimize systematic effects

4. Plan for outlier detection and handling procedures

4.l. Glossary

4.m. Problems

Exercise 15: 

Construct a histogram of the following measurements (in cm): 12.3, 12.5, 12.4, 

12.6, 12.3, 12.4, 12.5, 12.4, 12.3, 12.5

Exercise 16: 

Calculate the mode, median, mean, standard deviation, and standard error for the 

measurements in Problem 1.
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Exercise 17: 

For the measurements in Problem 1, find the 95% confidence interval for the true 

value.

Exercise 18: 

Using Chauvenet’s criterion, determine if any of the measurements in Problem 1 

should be considered outliers.

Exercise 19: 

If we measure a rectangle’s length as (12.5 ± 0.5) cm and width as (18.6 ± 0.2) 
cm, what is the uncertainty in the perimeter?

Exercise 20: 

How many measurements would be needed to reduce the standard error by a 

factor of 2 compared to Problem 1?
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5. The Nature of Scientific Thinking

5.a. The Interplay Between Observation and Understanding

Important

Scientific activity follows certain patterns that emerge naturally from the 

challenges we face when trying to understand the world around us. To grasp how 

scientific thinking works, let’s imagine we’re developing a completely new field of 

study from first principles.

When confronted with an unfamiliar phenomenon, our initial impulse is to ask: 

“What causes this?” This fundamental question has driven investigations into 

everything from light diffraction to radioactivity, from superconductivity to pulsars. 

Today, we continue asking this same question about elementary particles, climate 

change, cancer, and countless other phenomena.

Note

While asking about causes seems natural, we should recognize that these 

questions are fundamentally about relationships between observable variables. 

Rather than pursuing abstract notions of causation that might lead us into 

philosophical quagmires, scientists look for consistent patterns of relationship.

For instance, when investigating electrical conductivity, we might observe that 

current flow depends strongly on the potential difference across a conductor but 

shows no relationship to whether the conductor points north-south or east-west. This 

observation, though seemingly elementary to modern eyes, represents exactly the 

kind of relationship-finding that drives scientific progress.

During initial investigations of new phenomena, we focus on identifying which 

variables matter and which don’t. By determining these significant relationships, we 

narrow our focus to manageable dimensions and create the foundation for both 

experimental work and theoretical understanding.

Tip

Interestingly, this initial stage of science allows us to make relatively definitive 

statements, since we’re describing direct observations. This partly explains why 

scientific activities gain a reputation for revealing “scientific truth.” However, this 

certainty applies primarily to the basic identification of relationships. As we move 

beyond this foundational stage, we enter realms that involve much greater 

uncertainty and interpretation.

5.b. Models: The Conceptual Heart of Science

After identifying significant variables, we progress to a more sophisticated level of 

understanding by developing models. To appreciate what models are and how they 

function, consider a simple example:
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The critical insight here is that we’re dealing with two entirely different categories:

1. The actual physical wall that needs painting

2. A conceptual rectangle constructed from mathematical definitions

Warning

We often overlook this distinction because the concept of rectangles is so familiar 

that we instinctively assess whether a wall is “rectangular enough” for our 

calculation to be useful. But imagine if we couldn’t make this assessment – if, like 

a blind person, we could only measure the base and one side without verifying 

angles or other properties. In such cases, we might calculate an area with little 

relevance to the actual wall (if, for instance, the wall was shaped like a 

parallelogram).

To avoid such errors, we would need to systematically check whether our conceptual 

rectangle matches the actual wall by comparing multiple properties: straightness of 

sides, right-angle corners, equality of diagonals, and so on. Only after confirming 

sufficient correspondence between our mental model and physical reality could we 

confidently use the calculated area for practical purposes.

Important

This distinction between reality and mental constructs lies at the heart of 

scientific thinking. In all scientific endeavors, we find ourselves navigating 

between two realms:

• The physical world and our observations of it

• Conceptual constructs built from definitions and assumptions

These constructs are called models, and they pervade both scientific and everyday 

thinking. The painter envisioning a rectangular wall, the botanist categorizing a 

flower within a species, and the economist analyzing a national economy using 

equations – all are using models to represent reality.

Note

Models serve as shorthand descriptions of systems, providing frameworks for 

thought, communication, calculation, and further investigation. However, we 

must remember their fundamental nature: models are invented concepts, not 

reality itself. While we construct them to correspond as closely as possible to the 

physical world, no model can ever be an exact replica of reality. A wall isn’t 

actually a rectangle; a wheel isn’t actually a circle. At best, a model’s properties 

may be similar to reality’s properties, and a model’s usefulness depends on how 

well these properties align.

5.c. Testing Models Against Reality
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For a model to be scientifically useful, it must be testable against observation. This 

requirement distinguishes scientific models from other forms of thought. A 

proposition about “how many angels can dance on a pinhead” falls outside science 

not because it’s necessarily meaningless, but because it can’t be tested against 

experience. Such ideas may still have value as mathematical, philosophical, aesthetic, 

or ethical propositions – they simply aren’t scientific.

5.d. Refining Models Through Iteration

When these discrepancies become significant at our required level of precision, we 

must modify our model. We might adjust angles or dimensions, hoping that these 

refinements will improve the match between model and reality. Even with such 

adjustments, the model remains a conceptual construct, and the calculated area 

belongs to the model, not to the physical wall itself.

Important

This principle applies throughout science. We should feel free to modify our 

models whenever necessary, since they’re simply tools we’ve created to help 

understand reality. Our only consideration should be improving the model’s 

utility. Because it’s likely impossible to create a description that perfectly captures 

every aspect of physical reality, the continuous refinement and eventual 

replacement of models is a natural part of scientific progress.

This ongoing refinement process defines much of what scientists do, whether in 

“pure” research, technological development, or social sciences. While challenging 

work, this process builds on generations of previous efforts. In our professional lives, 

we’re fortunate if we can make even small improvements to existing models. Major 

revisions or entirely new models are rare achievements, often worthy of Nobel Prizes.

Tip

Yet we needn’t be fixated on perpetual model improvement. Though no model 

perfectly captures reality, many models correspond sufficiently well for practical 

purposes. In such cases, we can proceed confidently with our work, remembering 

to periodically verify the model’s continued adequacy. Rather than thinking in 

terms of “right” or “wrong” models, we should consider whether a model is 

“adequate,” “suitable,” or “appropriate” for our specific purposes.

5.e. The Historical Development of Scientific Models

Consider Louis de Broglie’s 1924 proposal of matter’s wave properties, published 

before direct observation of electron diffraction, or Enrico Fermi’s conception of the 

neutrino, proposed nearly four decades before experimental detection. There is no 

singular “scientific method” – rather, ideas and observations advance together, 

sometimes with one leading, sometimes the other.

Important
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What remains constant, regardless of developmental sequence, is the fundamental 

scientific activity: comparing models with reality through experiment.

We haven’t discussed how entirely new theoretical frameworks emerge. Sometimes 

existing ideas undergo gradual refinement, achieving better correspondence with 

observation without fundamentally changing (like the Ptolemaic system of planetary 

epicycles). Other times, progress requires radical reconceptualization (as with 

Einstein’s general relativity or Schrödinger’s wave mechanics).

When determining a well’s depth by dropping a stone, Einstein’s general relativity 

isn’t necessary – Newtonian mechanics suffices. We reserve more sophisticated 

models for circumstances that demand them, like predicting Mercury’s orbital 

peculiarities. Einstein’s theory doesn’t invalidate Newton’s for everyday applications; 

it simply provides better correspondence with reality at higher precision or in 

extreme conditions.

Tip

Generally, we choose theories based on adequacy for our purposes. When higher 

precision becomes necessary, we introduce appropriate refinements (unless 

working at knowledge frontiers where improved theories don’t yet exist).

5.f. Making Precise Comparisons Between Models and Reality

Let’s now examine how we practically compare models with physical systems. Vague 

conceptual comparisons won’t suffice; we need explicit, quantitative methods. This 

typically requires quantitative observation of the system alongside mathematical 

specification of the model.

However, to make this vague notion useful for detailed comparison with reality, we 

need mathematical precision. We might measure the elastic band’s extension as a 

function of load, collecting data like that shown in Table 4.1.
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Figure 2:  Extension of an elastic band as a function of load, showing central values 

(data points) and uncertainty ranges (error bars). This graphical representation 

reveals patterns that are difficult to discern from tabular data alone.

Note

While we’ve now collected measurements, a table of numbers doesn’t readily 

reveal patterns or relationships. Visual representation helps tremendously. By 

plotting these measurements on a graph (Figure 4.1), including both central values 

and uncertainty ranges, we can more easily judge the system’s behavior.

At this stage, we’ve completed only the observation phase. Our next task is 

constructing a model to represent the system.

5.g. Approaches to Model Construction

Let’s examine each approach.

5.g.i. Empirical Models:

Smooth Curve Fitting: A more sophisticated approach involves drawing a smooth 

curve through observed points (Figure 2). This assumes the system’s behavior is 

continuous and regular despite measurement uncertainty and scatter.
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Figure 3:  A smooth curve fitted through experimental observations, representing an 

empirical model of the system’s continuous behavior.

Warning

This assumption often holds for physical systems (like planetary motion), but 

responsibility for making this judgment rests with the experimenter based on 

knowledge of the system.

The smooth curve approach offers practical benefits, particularly for interpolation 

and extrapolation. If we need to estimate extension at a load between measured 

values, the curve provides a systematic method (Figure 3).
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Figure 4:  Interpolation: using a smooth curve to estimate values between measured 

data points.

Caution

Similarly, we might attempt to estimate values beyond our measurement range 

(Figure 4), though extrapolation is inherently less reliable than interpolation. We 

should have strong reasons to believe the system’s behavior remains consistent 

beyond measured ranges, as smooth behavior within measured regions doesn’t 

guarantee similar behavior beyond them (Figure 5).
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Figure 5:  Extrapolation: extending the smooth curve beyond the range of measured 

data points.
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Figure 6:  The danger of extrapolation: system behavior may change dramatically 

beyond the measured range, causing extrapolated predictions to diverge from reality.

Mathematical interpolation/extrapolation methods can perform these estimates 

without physically drawing curves, but they still depend fundamentally on 

assumptions about the system’s regularity.
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Figure 7:  A cautionary example: these temperature measurements represent 

noontime readings on successive days. Interpolating between points would 

incorrectly estimate midnight temperatures.

A common but problematic practice is connecting measured points with straight-line 

segments (Figure 7). Computer graphics often do this automatically. But such 

representations satisfy neither the requirements of observation (they’re not data 

points) nor modeling (they don’t represent our conceptual understanding of the 

system).
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Figure 8:  A problematic representation: connecting data points with straight-line 

segments neither represents raw observations nor a meaningful model of system 

behavior.

Empirically derived functions can serve as useful mathematical models, enabling 

interpolation and extrapolation with varying degrees of precision. However, we must 

remember that these functions’ validity as models depends on how well they capture 

the system’s actual behavior.

Note

Extrapolation particularly highlights model limitations. We can accurately predict 

sunset times weeks ahead because astronomical models are excellent, but weather 

forecasting becomes increasingly uncertain with time, and stock market 

prediction remains nearly impossible. The model’s quality determines prediction 

reliability.

5.g.ii. Theoretical Models:

Let’s illustrate this with an example:

For a theoretical approach, we’d begin with fundamental principles. We might 

hypothesize constant gravitational acceleration:

𝑎 = 9.8 m \/ s2 (11)
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This hypothesis immediately incorporates assumptions (like neglecting air resistance) 

that begin our model construction process. These assumptions might or might not 

make it a “good” model – that determination awaits experimental verification.

Through mathematical derivation (integration), we obtain:

$$v = 9.8t \text{ (assuming } v=0 \text{ at } t=0\text{)}$$

And (taking downward as the positive direction):

$$x = \frac{9.8}{2}t^2 \text{ (assuming } x=0 \text{ at } t=0\text{)}$$

Rearranging to express time as a function of distance:

$$t = \left(\frac{1}{4.9}\right)^{1/2}x^{1/2}$$

:::{note}

Throughout this derivation, each assumption becomes part of our model. 

The final equation represents a property of our model, not necessarily 

of reality. We must next determine how well this theoretical prediction 

matches actual measurements.

5.h. Comparing Theoretical Models with Experimental Results

A more effective approach uses visual comparison. Figure 9 shows: (a) a graph of our 

experimental measurements as points, (b) our theoretical model as a continuous 

curve, and (c) both superimposed for direct comparison.
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Figure 9:  Comparing model predictions with experimental observations: (a) 

experimental measurements as data points, (b) theoretical model as a continuous 

curve, and (c) superposition of both for direct comparison.

Important
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This visual comparison allows us to judge overall correspondence between model 

and reality. We can immediately see whether they agree, where discrepancies 

exist, and their magnitude relative to measurement uncertainty.

This approach clarifies what we can legitimately claim after an experiment. We can 

state that model and system behavior correspond (or don’t) to a certain extent – not 

that a theory is “true,” “correct,” or “wrong.” Such terminology misrepresents the 

nature of models. Better to describe models as “satisfactory,” “good enough,” or 

“appropriate” for particular purposes.

Yet Einstein’s theory doesn’t invalidate Newton’s for everyday applications – it 

simply provides a more comprehensive model with greater correspondence at 

extreme scales or precisions. Most people don’t measure well depths using relativity 

theory! We choose models based on adequacy for our specific purpose, introducing 

refinements only when necessary.

Note

This perspective offers an interesting philosophical insight: even when model and 

system appear to correspond perfectly, we can only claim that, at our current 

precision level, we haven’t detected discrepancies. We can be more definitive 

when finding disagreement – we can confidently state a model is inadequate if 

discrepancies significantly exceed measurement uncertainty.

Modern computing has transformed model comparison. While drawing graphs for 

complex functions once presented major difficulties, computers now display 

experimental measurements alongside theoretical predictions instantly. Nevertheless, 

understanding fundamental comparison principles remains essential, both for 

situations without computers and for ensuring meaningful interpretation of 

computer-generated results.

5.i. Linear Analysis: A Powerful Technique

Consider our free-fall time equation:

𝑡 = ( 1
4.9

)
1/2

𝑥1/2 (12)

Plotting this directly against measurements would create a parabolic curve, making 

visual assessment difficult. However, if we plot 𝑡 versus 𝑥1/2 instead, our theoretical 

relationship becomes linear:

𝑡 = 0.4515 × 𝑥1/2 (13)
Which follows the form:

vertical variable = slope × horizontal variable (14)

Where:

• vertical variable = 𝑡
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• horizontal variable = 𝑥1/2

• slope = 0.4515

Alternative transformations could work equally well – plotting $t^2$ 

versus $x$ instead of $t$ versus $x^{1/2}$ would also yield a straight 

line with different slope. The choice depends on convenience and which 

approach provides clearer comparison for a particular experiment.

## Determining Unknown Constants

:::{admonition} The Challenge of Unknown Parameters

:class: note

Often our theoretical models contain unknown constants that must be 

determined experimentally. For example, when testing Hooke's law (that 

spring extension is proportional to load), we might not know the spring 

constant:

$$x = \text{constant} \times W$$

After measuring extension versus load and plotting the results (Figure 11a), how do 

we represent this model? The equation actually represents an infinite family of 

straight lines passing through the origin, with slopes representing all possible spring 

constant values.
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Figure 10:  Determining unknown constants from graphical analysis: (a) experimental 

data plotted, (b) family of possible model lines, (c) identifying the range of lines 

consistent with experimental uncertainties.

This graphical approach offers significant advantages beyond simply testing model 

validity. Consider measuring electrical resistance from voltage-current 

measurements. We could calculate 𝑅 = 𝑉 /𝐼  for each measurement pair and average 

the results, but this algebraic approach can introduce serious errors:

Warning

1. It doesn’t allow us to visually assess model validity (whether V-I 

relationship is actually linear)

2. It cannot handle data scatter effectively

3. It cannot detect or compensate for systematic issues like unexpected 

intercepts or non-linearity at certain ranges
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With a graphical approach, even with scattered data, we can confidently determine 

resistance from the slope of a line that best represents the overall trend. If 

measurements show an unexpected intercept or deviate from linearity in certain 

regions, we can still extract reliable resistance values from the linear portion, 

unaffected by these discrepancies.

Important

Purely algebraic calculations would incorporate values from all measurements 

regardless of their relationship to the underlying model, potentially introducing 

significant errors. The graphical method makes discrepancies immediately visible 

and allows informed judgment about their significance.

Importantly, this approach lets us obtain accurate parameter values even without 

knowing the source of discrepancies between model and system. We need only 

identify discrepancies and ensure they don’t contaminate our results; investigating 

their causes can come later.

Note

While we’ve focused on determining constants from slopes, straight-line graphs 

actually provide two independent pieces of information – slope and intercept. 

This allows experiments to determine two separate quantities within a model, a 

capability we’ll explore further in later chapters.

5.j. Problems

5.k. Glossary

Exercise 21: 

Consider a pendulum experiment where the period T is measured at different 

lengths L. The measurements yield the following data:

• L = 0.25 m, T = 1.01 s

• L = 0.50 m, T = 1.42 s

• L = 0.75 m, T = 1.73 s

• L = 1.00 m, T = 2.01 s

The theoretical model predicts 𝑇 = 2𝜋√𝐿
𝑔 , where g is the acceleration due to 

gravity.

Plot the data in a way that creates a straight-line graph and determine the value 

of g from the slope.
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Exercise 22: 

A scientist proposes that the current I in a circuit varies with voltage V according 

to the relationship 𝐼 = 𝑎𝑉 + 𝑏𝑉 2 where a and b are constants. The following 

measurements are collected:

• V = 1.0 V, I = 3.2 mA

• V = 2.0 V, I = 7.3 mA

• V = 3.0 V, I = 12.4 mA

• V = 4.0 V, I = 18.5 mA

Describe two different methods to test whether this model adequately describes 

the data, and determine the constants a and b.

Exercise 23: 

A material’s resistivity 𝜌 is measured at various temperatures T, yielding the data:

• T = 20°C, 𝜌 = 1.72 × 10⁻⁸ Ω·m

• T = 40°C, 𝜌 = 1.85 × 10⁻⁸ Ω·m

• T = 60°C, 𝜌 = 1.97 × 10⁻⁸ Ω·m

• T = 80°C, 𝜌 = 2.10 × 10⁻⁸ Ω·m

Assuming a linear relationship between 𝜌 and T, estimate the resistivity at 100°C. 

Discuss the limitations of this extrapolation and what additional information 

would increase its reliability.

Exercise 24: 

A chemical reaction produces gas at a rate that varies with time. The volume V of 

gas collected at different times t is measured:

• t = 10 s, V = 12.5 mL

• t = 20 s, V = 23.8 mL

• t = 30 s, V = 33.9 mL

• t = 40 s, V = 43.1 mL

• t = 50 s, V = 51.6 mL

• t = 60 s, V = 59.4 mL

Examine the data to determine whether a linear model (𝑉 = 𝑘𝑡) or a model with 

decreasing rate (𝑉 = 𝐴(1 − 𝑒−𝑘𝑡)) better describes the reaction. Justify your 

conclusion using appropriate graphical analysis.
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Exercise 25: 

In an experiment to measure Young’s modulus E for a wire, a student plots 

elongation ΔL versus applied force F and obtains a straight line that doesn’t pass 

through the origin. The theoretical relationship is Δ𝐿 = 𝐹𝐿
𝐴𝐸  where L is the wire’s 

length and A is its cross-sectional area.

Identify three possible sources of discrepancy between the theoretical model and 

the experimental data, and explain how each might affect the results.

Exercise 26: 

The following relationship is proposed for a gas at constant temperature: 𝑃𝑉 𝑛 =
𝐶 where P is pressure, V is volume, and n and C are constants.

Explain how to transform this equation to create a linear relationship and 

describe how you would analyze experimental P-V data to determine the values of 

n and C.

Exercise 27: 

Two models are proposed for the relationship between a projectile’s range R and 

its launch angle 𝜃:

• Model A: 𝑅 = 𝑘 sin(2𝜃)
• Model B: 𝑅 = 𝑘 sin(𝜃) cos(𝜃)

Without performing calculations, discuss whether it’s possible to experimentally 

distinguish between these models. What approach would you take?

Exercise 28: 

A student measures the refractive index n of a solution at different concentrations 

c:

• c = 0.1 mol/L, n = 1.34

• c = 0.3 mol/L, n = 1.36

• c = 0.5 mol/L, n = 1.38

• c = 0.7 mol/L, n = 1.41

• c = 0.9 mol/L, n = 1.44

The student needs to determine the refractive index at c = 0.4 mol/L. Discuss the 

assumptions involved in interpolating this value and evaluate whether linear 

interpolation is appropriate.
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Exercise 29: 

A simple model suggests that for small angles, a pendulum’s period T is 

independent of its amplitude. A student measures the period at different 

amplitudes and obtains:

• Amplitude = 5°, T = 1.51 s

• Amplitude = 10°, T = 1.52 s

• Amplitude = 15°, T = 1.53 s

• Amplitude = 20°, T = 1.55 s

• Amplitude = 25°, T = 1.57 s

Discuss how this data could guide model refinement. Propose a refined model that 

might better describe the relationship between period and amplitude.

Exercise 30: 

A physicist discovers that a quantity y depends on a variable x but doesn’t know 

the form of the function. She collects the following data:

• x = 1, y = 1.0

• x = 2, y = 1.4

• x = 3, y = 1.7

• x = 4, y = 2.0

• x = 5, y = 2.2

Describe how she could determine whether the relationship is: (a) linear, (b) 

logarithmic, (c) square root, or (d) exponential. What transformations would she 

apply to test each possibility?
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6. Designing Experiments: Principles and Methods

6.a. Introduction to Experimental Design

In the previous chapter, we explored the various ways researchers compare models 

with real-world systems. The diversity we encountered suggests a crucial insight: 

there is no universal approach to planning experiments. The techniques and 

methodologies researchers employ necessarily depend on specific circumstances and 

objectives.

Despite this diversity, certain fundamental principles remain valid across virtually all 

experimental situations. Perhaps most important among these is keeping our 

experimental purpose clearly in mind: the fundamental requirement in 

experimentation, regardless of what else is happening, is to compare the 

properties of a physical system with the properties of one or more theoretical 

models.

6.b. Testing an Existing Model

Remember that determining whether a model is appropriate for a given system must 

be based on experimental evidence. We aren’t attempting to decide whether models 

are “true” or “false” in some absolute sense—all models are imperfect approximations. 

Rather, we need to determine if a particular model is adequate for our specific 

purposes at our desired level of precision.

Warning

If conditions change or greater precision becomes necessary, we must reconsider 

the model’s adequacy. As discussed previously, graphical approaches typically 

provide the most effective way to test physical models. Ideally, we want to plot 

the model’s behavior alongside our experimental observations of the system’s 

behavior, which requires some preparation.

Since conventional graphs are two-dimensional, we initially need to limit ourselves to 

examining relationships between two variables at a time. When dealing with multiple 

input variables, we can simplify by holding all but one constant while studying how 

the output variable depends on the remaining input variable. After completing this 

analysis, we can adjust one of the previously fixed variables and repeat the process. 

Through successive measurements of this kind, we can construct a comprehensive 

picture of the system’s behavior.

Note

This approach assumes we can hold input variables constant independently of 

one another. When this isn’t possible, more sophisticated techniques become 

necessary, which we’ll touch on later.

For now, assuming we’re working with a single input variable (either because only 

one exists or because we’ve isolated one by controlling the others), the procedure is 
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straightforward: measure how the output variable changes with the input variable, 

then plot these measurements for comparison with the model’s predictions. As noted 

earlier, the advantages of linear representation are so significant that we’ll focus 

primarily on transforming data into straight-line form.

6.c. Converting Equations to Straight-Line Form

6.c.i. Basic Transformations:

Consider a function describing the time of fall for an object:

𝑡 = 0.4515𝑥1/2 (in meters and seconds) (15)

To represent this in linear form:

vertical variable = slope × horizontal variable + intercept (16)

We might choose:

vertical variable = 𝑡 (17)

horizontal variable = 𝑥1/2 (18)
slope = 0.4515 (19)

intercept = 0 (20)

Note

There’s no single formula for these transformations. The most effective approach 

is keeping the target form clearly in mind while rearranging the original equation 

until we achieve the desired structure.

Multiple valid transformations often exist for a given equation. The function above 

could be equivalently expressed as:

𝑥1/2 = 1
0.4515

𝑡 (21)

𝑡2 = 0.2309𝑥 (22)

𝑥 = 4.905𝑡2 (23)
While convention often suggests plotting input variables horizontally and output 

variables vertically, there’s no strict requirement to do so. Choose the representation 

that best serves our analytical purposes.

6.c.ii. Practical Considerations:

For example, when analyzing the period of a physical pendulum, the equation is 

given by:

𝑇 = 2𝜋√ 𝐼
𝑚𝑔𝑑

(24)

Where:
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• 𝑇  = period of oscillation

• 𝐼  = moment of inertia about the pivot point

• 𝑚 = mass of the pendulum

• 𝑔 = acceleration due to gravity

• 𝑑 = distance from pivot to center of mass

For a compound pendulum with multiple masses at different positions, the moment 

of inertia becomes more complex:

𝐼 = ∑
𝑛

𝑖=1
𝑚𝑖(𝑟2

𝑖 + 𝑘2
𝑖

12
) (25)

Where:

• 𝑚𝑖 = mass of each component

• 𝑟𝑖 = distance from pivot to center of each component

• 𝑘𝑖 = length of each component (for extended objects)

Warning

We might be tempted to plot 𝑇  versus √1
𝑑  for different configurations, but this 

would require calculating the complex moment of inertia for each data point and 

introduce compounded uncertainties.

A better approach: square both sides of the original equation to get:

𝑇 2 = 4𝜋2 𝐼
𝑚𝑔𝑑

(26)

Then plot 𝑇 2 versus 1
𝑑  for a fixed configuration. This gives a straight line with slope 

4𝜋2 𝐼
𝑚𝑔 . After measuring the slope, we can calculate the moment of inertia using:

𝐼 = 𝑚𝑔 × slope
4𝜋2 (27)

Important

This method simplifies data collection and analysis while providing direct insight 

into the system’s physical properties. By postponing the calculation of the 

moment of inertia until after finding the slope, we reduce error propagation and 

gain a clearer understanding of the pendulum’s behavior.

This principle—plot variables in their simplest form and leave arithmetic for the final 

calculation—serves well in experimental design.

6.c.iii. Working with Compound Variables:

Converting this to linear form using single-variable functions of h and T proves 

impossible. However, using compound variables makes it possible. Starting by 

squaring both sides:
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𝑇 2 =
4𝜋2(ℎ2 + 𝑘2)

𝑔ℎ
(28)

Multiplying both sides by h:

𝑇 2ℎ =
4𝜋2(ℎ2 + 𝑘2)

𝑔
(29)

Rearranging to isolate h²:

ℎ2 = 𝑔
4𝜋2 𝑇 2ℎ − 𝑘2 (30)

This gives us a linear equation where:

• Vertical variable = ℎ ²
• Horizontal variable = 𝑇 ² ℎ
• Slope = 𝑔/4𝜋 ²
• Intercept = −𝑘 ²

Compound variables also prove valuable with multiple input variables. When 

measuring specific heat using flow calorimetry, the heat balance equation is:

𝑄 = 𝑚𝐶Δ𝑇 (31)

Where 𝑄 is heat generation rate, 𝑚 is mass flow rate, 𝐶 is specific heat, and Δ𝑇  is 

temperature difference.

Tip

Rather than plotting Δ𝑇  versus 1/𝑚 (with separate curves for different 𝑄 values) 

or Δ𝑇  versus 𝑄 (with separate curves for different 𝑚 values), we could plot 

𝑚Δ𝑇  versus 𝑄. This creates a single graph incorporating both input variables 

simultaneously, with slope 𝐶 , enabling efficient model testing and parameter 

determination.

If plotting with compound variables reveals unexpected patterns (scattered data or 

nonlinearity), we can always revert to plotting individual variable pairs to investigate 

further.

6.c.iv. Logarithmic Transformations:

Logarithmic plotting applies to simple power relationships too. For:

𝑦 = 𝑥𝑛 (32)

Taking logarithms:

log 𝑦 = 𝑛 log 𝑥 (33)

Plotting log y versus log x (a “log-log plot”) yields a straight line with slope n.

For instance, if measurements follow y = x¹·⁸ rather than y = x², plotting y versus x² 

would show systematic deviation from linearity without revealing the true 
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relationship. A log-log plot would still produce a straight line, immediately indicating 

a power relationship, with the slope revealing the actual exponent (1.8).

We’ll explore log-log plotting further when discussing empirical model construction 

in the next chapter.

6.d. Step-by-Step Experimental Planning

The planning process includes:

1. Identify system and model: This seemingly obvious step can be surprisingly 

challenging. The phenomenon under study is often surrounded by 

measurement apparatus, obscuring the fundamental system. If we struggle to 

identify the system, ask: “What entity’s properties does the model describe?”

Similarly, clearly define the model’s limitations. When studying falling objects, will 

we account for air resistance? Neglecting air resistance isn’t irresponsible—it’s 

defining one aspect of the model. The experiment itself will reveal whether this 

simplification is justified at the desired precision level.

1. Select variables: Typically, one quantity presents itself as the natural output 

variable. If there’s only one input variable, selection is straightforward. With 

multiple input variables, identify the primary independent variable and vary 

others in discrete steps.

2. Transform the equation: Put the model equation into straight-line form as 

described earlier. Remember, multiple valid transformations usually exist. 

Choose one that serves our purposes effectively. When the equation contains 

unknown parameters to be determined experimentally, structure the 

transformation to place these unknowns in the slope rather than the intercept 

whenever possible. Intercepts are more susceptible to systematic errors from 

instrument defects.

3. Determine variable ranges: Plan for an input variable range spanning at least 

a factor of 10. Wider ranges provide better basis for comparing system and 

model behaviors. While we can’t directly control output variable ranges, 

carefully consider instrument limitations. Circuit components have maximum 

current ratings, materials have elastic limits, and sensors have operating 

ranges. Perform trial measurements to determine input variable ranges that 

avoid damaging equipment or exceeding measurement capabilities.

4. Consider experimental precision: Begin with a target precision level for the 

final result. This guides measurement method selection. A request to “measure 

𝑔 using a pendulum” is meaningless without specifying whether we need 10% 

precision (achievable with simple equipment in minutes) or 0.01% precision 

(requiring sophisticated apparatus and days of work).

With a clear precision goal—say, measuring 𝑔 within 2%—we can work backward to 

determine requirements for each component measurement. For a pendulum 

experiment, if we need 𝑔 within 2%, we might aim for uncertainties in length (ℓ) and 

period-squared (𝑇 2) below 1% each.

January 01, 2025 47 of 122



| Veillette, 2025

If we can measure length with ±1mm uncertainty, the minimum acceptable length 

measurement would be:

0.001 m
ℓ

= 0.01 (34)

ℓ = 0.1  m (35)
Similarly, if timing uncertainty is ±0.2s, and period measurement requires 0.5% 

precision (for 1% in 𝑇 2), the minimum timing interval would be:

0.2 s
𝑡

= 0.005 (36)

𝑡 = 40  seconds (37)
This analysis helps ensure all measurements contribute meaningfully to the desired 

final precision. If any measurement appears limited to uncertainties exceeding the 

target, we’ll need either more precise measurement methods or a revised precision 

goal.

The complete experiment design process is illustrated in Appendix A4 with a sample 

experiment.

Warning

While this planning may seem excessive for simple laboratory exercises, it 

represents the minimum preparation required for serious research. Resist the 

temptation to rush into measurements and figure out analysis later—developing 

good planning habits now will serve us well throughout our scientific careers.

6.e. Designing Experiments Without Existing Models

Even without detailed theoretical understanding, empirical models prove extremely 

valuable. They help organize thinking about complex systems and enable 

mathematical operations like interpolation, extrapolation, and forecasting.

Tip

In model-free situations, experiment design becomes more straightforward if 

input variables can be isolated. Simply measure the output variable across suitable 

ranges of input variables to construct a comprehensive picture of system 

behavior. When input variables can’t be isolated, more complex challenges arise, 

as discussed in a later section.

Even without established theories, consider any available hints about potentially 

applicable functions, testing them against our observations. One powerful technique 

for obtaining such hints is dimensional analysis.

6.f. Dimensional Analysis

This approach can’t determine dimensionless constants (like 𝜋), but it reveals 

functional relationships between variables.
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For example, analyzing the velocity (𝑣) of waves on a string under tension (𝑇 ) with 

mass per unit length (𝑚):

𝑣 ∝ 𝑇 𝑎𝑚𝑏 (38)
Dimensionally:

• 𝑣: 𝐿𝑇 −1

• 𝑇  (tension): 𝑀𝐿𝑇 −2

• 𝑚: 𝑀𝐿−1

Therefore:

𝐿𝑇 −1 = (𝑀𝐿𝑇 −2)𝑎(𝑀𝐿−1)𝑏 = 𝑀𝑎+𝑏𝐿𝑎−𝑏𝑇 −2𝑎 (39)

Matching powers:

• For M: 0 = a+b

• For L: 1 = a-b

• For T: −1 = −2a

Solving gives 𝑎 = 1
2 , 𝑏 = −1

2 , yielding:

𝑣 = (dimensionless constant) × √ 𝑇
𝑚

(40)

6.g. Difference-Type Measurements

6.g.i. Null-Effect Measurements in Physical Sciences:

For steel wires, we might cut a single wire in half, load one piece while leaving the 

other unloaded, and measure the difference in length. Both experience identical 

temperature variations, but only one responds to loading. This approach reveals small 

effects that would otherwise be lost in environmental noise.

Warning

Always check system performance both with and without the influence we’re 

studying. Wilson’s humorous observation is worth remembering: “It has been 

conclusively proved by numerous tests that the beating of drums and gongs 

during a solar eclipse causes the sun’s brightness to return.”

6.g.ii. Control Groups in Biological Sciences:

This approach often requires refinements like placebo treatments and double-blinding 

(keeping both experimenters and subjects unaware of group assignments) to prevent 

psychological effects from contaminating results.

Note

Such experimental designs—pairing treatment groups with carefully matched 

control groups—are foundational in biological research, whether studying 
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carcinogenic food additives in mice or music education effects on academic 

performance.

6.h. Observational Studies with Uncontrollable Variables

In such cases, careful observational techniques become crucial. With well-defined 

systems and models (like celestial mechanics), precise measurements may still allow 

meaningful conclusions—determining that general relativity better explains 

Mercury’s orbit than Newtonian mechanics, for instance.

The best approach: meticulous sampling procedures. Create artificial null-effect 

measurements by constructing treatment groups under the influence we’re studying 

and control groups exempt from it but otherwise matched as closely as possible.

Important

The validity of such studies depends entirely on sampling quality. Effects are often 

subtle enough that different sampling approaches can yield contradictory 

conclusions. This reality explains why public policy debates featuring scientific 

components often present competing “scientific” evidence—different sampling 

approaches can support opposing conclusions.

When facing such complexity, conventional concepts like “proof” require 

modification. Mathematical theorems can be proven from axioms, and some physical 

measurements are certain enough to be considered “proven” (the moon is closer than 

the sun). But in complex systems with probabilistic effects, “proof” gives way to 

correlation—statistical relationships between variables that differ fundamentally 

from direct cause-effect relationships but remain valid for identifying influencing 

factors.

We’ll examine correlation analysis further in Chapter 6 when discussing experimental 

evaluation.

6.i. Glossary

6.j. Problems

For problems 6-23, state which variables or combinations of variables should be plotted 

to verify the proposed relationship, and explain how to determine the unknown 

parameter(s) from the graph (slope, intercept, etc.).

Exercise 31: 

A research paper claims the terminal velocity of a skydiver depends solely on the 

skydiver’s mass and gravitational acceleration. Evaluate the reasonableness of 

designing an experiment to test this hypothesis.
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Exercise 32: 

A projectile is launched with initial velocity 𝑣 at angle 𝛼 to the horizontal. Its 

range may depend on the projectile’s mass, initial velocity, launch angle, and 

gravitational acceleration. Determine the functional form of this relationship 

through dimensional analysis.

Exercise 33: 

The internal pressure in a soap bubble depends on the liquid’s surface tension and 

the bubble’s radius. Using dimensional analysis, determine the relationship 

between these variables.

Exercise 34: 

A torsional oscillator’s period depends on the support’s torsional stiffness 

coefficient (torque per unit angular displacement) and the moment of inertia of 

the oscillating object. Find the functional relationship between these quantities.

Exercise 35: 

The central deflection of a beam with circular cross-section, supported at both 

ends and loaded at its center, depends on the applied force, distance between 

supports, beam radius, and the material’s Young’s modulus. Use dimensional 

analysis to determine the relationship.

Exercise 36: 

The position of an object under constant acceleration follows:

𝑠 = 1
2
𝑎𝑡2 (41)

where 𝑠 and 𝑡 are measurable. Determine the acceleration 𝑎.

Exercise 37: 

The fundamental vibration frequency of a stretched string is given by:

𝑓 = 1
2ℓ

√ 𝑇
𝑚

(42)

where 𝑓 , ℓ, and 𝑇  can be measured. Determine 𝑚.
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Exercise 38: 

The exit velocity of an ideal fluid flowing through an opening in a tank follows:

𝑣 = √2𝑃
𝜌

(43)

where 𝑣 and 𝑃  are measurable. Determine fluid density 𝜌.

Exercise 39: 

A conical pendulum’s period is described by:

𝑇 = 2𝜋√ℓ cos 𝛼
𝑔

(44)

where 𝑇  and 𝛼 are measurable, and ℓ is fixed and known. Determine 𝑔.

Exercise 40: 

The deflection of a cantilever beam follows:

𝑑 = 4𝑊ℓ3

𝑌 𝑎𝑏3 (45)

where 𝑑, 𝑊 , and ℓ are measurable, while 𝑎 and 𝑏 are fixed, known values. 

Determine Young’s modulus 𝑌 .

Exercise 41: 

The height of capillary rise in a tube follows:

ℎ = 2𝜎
𝜌𝑔𝑅

(46)

where ℎ and 𝑅 are measurable, and 𝜌 and 𝑔 are known constants. Determine 

surface tension 𝜎.

Exercise 42: 

The ideal gas law states:

𝑝𝑉 = 𝑅𝑇 (47)

where 𝑝 and 𝑇  are measurable, and 𝑉  is fixed and known. Determine gas constant 

𝑅.
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Exercise 43: 

The Doppler frequency shift for a moving source follows:

𝑓 = 𝑓0
𝑣

𝑣 − 𝑣0
(48)

where 𝑓  and 𝑣 ₀ are measurable quantities, and 𝑓 ₀ is a known constant. 

Determine velocity 𝑣.

Exercise 44: 

Thermal expansion of a solid follows:

ℓ = ℓ0(1 + 𝛼Δ𝑇) (49)

where ℓ and Δ𝑇  are measurable, and ℓ0 is unknown but constant. Determine 

coefficient of expansion 𝛼.

Exercise 45: 

Snell’s law of refraction states:

𝑛1 sin 𝜃1 = 𝑛2 sin 𝜃2 (50)

where 𝜃1 and 𝜃2 are measurable angles, and 𝑛1 is a known constant. Determine 

refractive index 𝑛2.

Exercise 46: 

The thin lens equation states:

1
𝑓

= 1
𝑠

+ 1
𝑠′

(51)

where 𝑠 and 𝑠′ are measurable. Determine focal length 𝑓 . Compare two possible 

plotting methods and explain which is preferable.

Exercise 47: 

The resonant frequency of a parallel LC circuit follows:

𝜔 = 1√
𝐿𝐶

(52)

where 𝜔 and 𝐶 are measurable. Determine inductance 𝐿.
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Exercise 48: 

Coulomb’s law for electrostatic force is:

𝐹 = 1
4𝜋𝜀0

𝑞1𝑞2
𝑟2 (53)

where 𝐹  and 𝑟 are measurable, while 𝑞1 and 𝑞2 are fixed, known values. Describe 

how to verify the form of this relationship.

Exercise 49: 

The force between parallel current-carrying conductors follows:

𝐹 = 𝜇0
4𝜋

𝑖1𝑖2ℓ2

𝑟2 (54)

where 𝐹 , 𝑖1, 𝑖2, and 𝑟 are measurable quantities, while 𝜇0 and ℓ are constants. 

Describe how to verify this relationship.

Exercise 50: 

The charge remaining on a discharging capacitor follows:

𝑄 = 𝑄0𝑒−𝑡/𝑅𝐶 (55)

where 𝑄 and 𝑡 are measurable, and 𝑅 is known and fixed. Determine capacitance 

𝐶 .

Exercise 51: 

The impedance of a series RC circuit follows:

𝑍 = √𝑅2 + 1
𝜔2𝐶2 (56)

where Z and 𝜔 are measurable. Determine resistance R and capacitance C.

Exercise 52: 

The relativistic mass variation with velocity follows:

𝑚 = 𝑚0

√1 − 𝑣2

𝑐2

(57)

where m and v are measurable. Determine rest mass m₀ and speed of light c.
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Exercise 53: 

The wavelengths in the Balmer series of hydrogen follow:

1
𝜆

= 𝑅(1
4

− 1
𝑛2 ) (58)

where 𝜆 and 𝑛 are measurable. Determine Rydberg constant 𝑅.
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7. Evaluating Experimental Results

Experimental data alone tells only part of the story. The ability to properly evaluate 

results is what transforms raw measurements into meaningful scientific knowledge - 

a fundamental skill that distinguishes casual observations from rigorous scientific 

inquiry. This chapter focuses on why this evaluation process is crucial: it validates 

measurements through uncertainty analysis, connects physical systems with 

theoretical models, and ultimately determines whether findings represent 

substantiated scientific knowledge or merely unverified observations.

7.a. The Essential Final Analysis

The primary objective in conducting an experiment is to make substantive statements 

about relationships between physical systems and theoretical models. This involves:

The evaluation process involves several key analytical steps. First, we must identify 

patterns and trends in data that either align with or deviate from theoretical 

predictions. Next, it’s essential to quantify the strength of relationships between 

measured variables to understand how they interact. We’ll need to determine 

whether any observed effects are statistically significant, that is, ensuring findings 

aren’t simply due to random chance. Additionally, accounting for experimental 

uncertainties and understanding how they impact conclusions is crucial for reliable 

results. Finally, we must critically assess whether results support, refute, or suggest 

necessary modifications to existing theoretical models. This comprehensive analysis 

ensures experimental findings contribute meaningful insights to scientific 

understanding.

Important

Even after completing all the measurements for an experiment, an equally 

important phase still remains: evaluating what the results actually mean. This 

evaluation phase transforms raw data into meaningful scientific conclusions. The 

analysis stage is where we determine whether experimental results validate or 

challenge existing theories, and potentially uncover new physical insights.

7.b. Approaching Evaluation with the Right Mindset

Important

Before diving into specific evaluation techniques, two essential principles should 

guide the approach:

First, recognize that experimental results are precious resources. Whether they 

come from a multi-million dollar research program or a simple classroom 

exercise, results represent unique, sometimes irreplaceable information. Honor 

this by extracting every possible insight from observations and ensuring final 

conclusions are as complete as possible.

Second, maintain unwavering objectivity. It’s nearly impossible to approach an 

experiment without some preconceptions about what “should” happen. However, 
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we must discipline ourselves to assess results objectively. If outcomes differ from 

expectations or hopes, report them honestly and use them constructively to guide 

future investigations.

Tip

In academic settings, students sometimes misunderstand experimental objectives, 

believing the goal is to reproduce known values. If a measurement of gravitational 

acceleration yields 9.60 m/s² instead of the textbook 9.80 m/s², this isn’t a failure—

it’s simply a measurement with its own characteristics and uncertainties. Rather 

than fretting over differences from established values, focus on making 

measurements as reliable as possible and accurately assessing their uncertainties.

Note

When measuring quantities with established values, resist comparing results until 

analysis is complete. This builds confidence in the experimental process—

confidence we’ll need when eventually measuring previously unmeasured 

quantities during professional research.

Important

If a gravitational acceleration measurement is 9.60 ± 0.30 m/s², recognize that the 

uncertainty is as significant as the central value. The 3% uncertainty might reflect 

equipment limitations rather than experimental shortcomings. Textbook values 

often appear without context about the sophisticated methods and equipment 

used to obtain them. The aim should be honest, objective reporting of results with 

appropriate uncertainty limits—not perfect reproduction of established values in 

limited laboratory time.

7.c. The Evaluation Process: Four Essential Stages

Important

The complete evaluation process consists of four key stages:

1. Calculate the values and uncertainties of basic measured quantities

2. Assess correspondence between experimental system and theoretical model

3. Calculate values of the properties we set out to measure

4. Estimate the overall precision of the experiment

Let’s examine each stage in detail.

7.c.i. Stage 1: Calculating Elementary Quantities:

Note
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The first task is determining the values and uncertainties of the fundamental 

quantities involved in the experiment. Consider a pendulum experiment designed 

to determine gravitational acceleration. We’ll likely have measurements of 

pendulum length (ℓ) as the input variable and time measurements for multiple 

oscillations as the output, from which we’ll calculate oscillation period (T).

The approach depends on whether we’re working with estimated uncertainties or 

statistical treatment of random fluctuations.

Working with Estimated Uncertainties:

Tip

For pendulum length measurements using a meter stick, we’ve likely determined 

intervals within which we’re confident the true values lie. Results would appear 

as a set of values in the form: value ± uncertainty.

Similarly, if we’ve counted oscillations and timed them with a stopwatch, we might 

express time measurements with their uncertainty ranges. However, the oscillation 

period 𝑇  (the actual variable of interest) must be calculated from these 

measurements. If we counted 15 oscillations that took 18.4 ± 0.2 seconds, the period 

for a single oscillation would be:

(1/15)(18.4 ± 0.2) = 1.227 ± 0.013 seconds

Notice that both the central value and uncertainty must be calculated through this 

division. This significant modification of uncertainty values is necessary whenever 

we perform arithmetic operations on basic measurements.

The final result will be a set of ℓ and 𝑇  values with their associated uncertainties, 

preparing us for graphical analysis.

Working with Statistical Uncertainties:

Important

If repeated measurements show random fluctuations, we may have collected 

multiple readings for statistical analysis. We’ll need to express these as central 

values with uncertainties suitable for plotting.

Note

As discussed in earlier chapters, sample means and standard deviations of means 

provide readily interpretable statistical significance. When reporting results, 

clearly indicate that we’re quoting sample means and standard deviations so 

readers understand we’re specifying intervals with 68% probability of containing 

the true value.
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Warning

Remember that laboratory samples are often too small for definitive assessment of 

the underlying distribution. We’re making an assumption when applying 

Gaussian distribution properties to the sample, though it’s usually reasonable.

Also recall warnings about small-sample statistics—generally, statistical 

approaches aren’t worthwhile with fewer than 10 observations.

Consider how uncertainty regions will be interpreted on the graph. If both variables 

have similar statistical character, each point’s uncertainty rectangle will have clear 

interpretation. If variables have different uncertainty types (estimated versus 

statistical), interpretation becomes problematic. We might need to standardize them—

perhaps using twice the standard deviation of the mean (95% probability) to make 

them comparable to estimated uncertainties.

At this stage, every experimental quantity should have a central value and 

uncertainty, but we’re not quite ready for graphing. If we need to plot derived 

variables (like T² vs. ℓ for a pendulum), we must calculate these through arithmetic 

operations. Remember to properly propagate uncertainties—if plotting T² values, 

uncertainty bars must represent the actual interval over which T² is uncertain.

7.c.ii. Stage 2: Creating Effective Graphs:

Important

Whether the graph serves as a simple illustration or as the key analytical tool, the 

goal is displaying results so their characteristics are immediately apparent. This 

requires thoughtful choices about scale, proportions, and presentation.

Tip

First, ensure graph paper is sufficiently large. Plotting high-precision observations 

(0.1%) on standard letter-sized paper is futile when graphing uncertainty is 

around 2%. Unless uncertainties are clearly visible, we’ll lose valuable 

information. Similarly, make the graph fill the available area by choosing 

appropriate scales and suppressing zero when necessary. When plotting copper 

wire resistance versus temperature with values ranging from 57-62 ohms, starting 

the resistance scale at 55 rather than zero creates a meaningful display instead of 

a “flat roof” over empty graph paper.

There are exceptions where preserving the origin is important—when examining 

behavior near zero or when illustrating variation relative to baseline values. 

Generally, however, maximize use of graph space.

Important
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Clearly indicate uncertainty ranges for each measurement. We might use crosses 

with horizontal and vertical bars showing uncertainty ranges, or small rectangles 

encompassing the measurement with dimensions indicating coordinate 

uncertainties. The specific method matters less than consistently marking 

uncertainties on every graph. Note the nature of these uncertainties (estimated 

limits, standard deviations, etc.) on the graph itself or in its caption to prevent 

readers from hunting through text for interpretation guidance.

If plotting multiple datasets on one graph, differentiate them clearly through different 

symbols, colors, or other distinguishing features.

7.c.iii. Stage 3: Comparing Models with Experimental Data:

Important

Once observations are plotted, we’re ready for the crucial step—comparing system 

properties with model predictions. The approach varies by circumstance, but we’ll 

assume we’ve arranged variables for linear graphical representation.

Scenario 1: Fully Specified Model:

Note

If we’re working with a completely specified model without undetermined 

parameters, the goal is simply assessing how well model predictions match 

experimental observations. Draw the model’s function on the same graph as 

experimental points, using identical scales. This approach was illustrated earlier 

with falling object observations compared to the theoretical expression:

𝑡 = 0.4515𝑥1/2 (59)

How do we judge correspondence quality? This is where uncertainty intervals 

become crucial. Without them, the inevitable scatter in experimental points would 

make meaningful comparison impossible—what are the chances of a theoretical line 

passing exactly through multiple scattered points? When points represent possible 

value intervals rather than single values, logical assessment becomes possible.

Tip

If the line representing the model passes through each point’s uncertainty region 

(as in the earlier example), we can state this observation directly. This doesn’t 

“prove” the equation is “true” or “correct”—it merely indicates the model and 

system are “consistent,” “in agreement,” or “compatible” within our measurement 

precision. Using appropriate language prevents misrepresentation and potential 

misunderstanding.
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Also recognize that agreement exists only at our current precision level. At higher 

precision, discrepancies might appear that weren’t detectable in the experiment.

Scenario 2: Partial Correspondence:

Note

Sometimes a model adequately describes a system only within certain parameter 

ranges. The graphical comparison might resemble Figure 6.1(b) or 6.1(c), showing 

agreement over limited ranges. For instance, fluid flow through a pipe might 

follow a linear pressure-flow relationship only below turbulence onset, or metal 

resistivity might follow a linear temperature model except at very low 

temperatures.

Tip

In such cases, report the comparison using language like: “We observed 

agreement between model and observations only over the range X to Y” or “The 

properties diverged significantly beyond value Z.”

Important

Resist thinking something is “wrong” when models and systems don’t correspond 

completely. Both exist independently, and we cannot prejudge their overlap 

extent. Detecting validity limits for particular models often provides valuable 

clues for model improvement.

Scenario 3: Unexpected Intercepts:

Note

We’ll frequently encounter situations where a model’s behavior passes through 

the origin, but experimental observations don’t, as shown in Figures 6.1(d) and 

6.1(e). Such discrepancies can arise from various model-system mismatches and 

provide valuable analytical insights.

Tip

When drawing graphs, check behavior at the origin. As previously discussed, 

graphical analysis helps obtain answers free from systematic errors associated 

with unexpected intercepts. Knowing whether such intercepts exist helps assess 

overall correspondence between model and system.

Scenario 4: Unexpected Data Scatter:

Important
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During experiment planning, we should have carefully assessed measurement 

uncertainties and chosen appropriate methods to achieve the target precision. If 

we’ve done this properly, the scatter in plotted points should be consistent with 

estimated measurement uncertainties, as in Figure 6.1(a).

Warning

However, reality often deviates from expectations, and we may find ourselves 

facing a situation like Figure 6.1(f), where scatter exceeds predicted uncertainty. 

This usually indicates unforeseen factors in the measurement process that weren’t 

accounted for in the initial uncertainty assessment.

Don’t leave such discrepancies unaddressed. Check the apparatus to identify 

potential fluctuation sources—perhaps a loose electrical connection or unstirred 

heating bath. Resolving such issues is always satisfying. If continuing the experiment 

isn’t possible, work with existing results and make the best assessment possible of 

correspondence between model and system, perhaps noting that observations 

distribute uniformly around the model line.

Scenario 5: Complete Non-correspondence:

Warning

It’s rare to encounter situations where system behavior bears no resemblance 

whatsoever to model behavior [Figure 6.1(g)]. With properly functioning 

equipment, this outcome is highly unlikely. Models may be imperfect 

representations of physical reality, but they wouldn’t qualify as models if they 

performed as poorly as this scenario suggests.

Such complete correspondence failure usually indicates experimental error—

misinterpreting variables, incorrectly transforming equations, improper equipment 

setup, or mistakes in observation, calculation, or graphing. If possible, review 

everything from the beginning. If equipment access isn’t possible, check all analytical 

and arithmetic processes. If all error-finding attempts fail, report results honestly and 

objectively. We may have discovered something novel, and an honest account of 

puzzling results from well-checked equipment will interest others in the field.

Important

Throughout this assessment process, remember: experiments don’t give “right” or 

“wrong” results. Our responsibility is conducting experiments carefully and 

reporting outcomes honestly and objectively. Occasional reminders that models 

provide only partially satisfactory representations of physical systems are healthy. 

Understanding model validity limits and failure modes provides invaluable 

evidence for those seeking to improve them.
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7.c.iv. Stage 4: Determining Values from Straight-Line Analysis:

Note

In previous sections, we discussed comparing fully specified models (including all 

numerical values) with experimental systems. However, as explained in earlier 

chapters, straight-line analysis frequently serves to determine unknown model 

parameters appropriate for the system.

In these cases, the model contains initially unknown quantities, so we cannot draw a 

complete model graph for comparison with experimental points. The graph initially 

contains only the points themselves, as shown in Figure 6.2(a).

Consider measuring current through and potential difference across a resistor to test 

Ohm’s Law (V = IR). Without knowing resistance R, the model behavior encompasses 

all lines through the origin on the I-V plane described by:

𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × 𝐼 (60)
where the constant could be any positive value. In principle, we could draw all 

possible lines on the graph and determine: (1) the extent to which system and model 

behaviors overlap, and (2) the range of R values appropriate for the system (as 

illustrated in Figure 4.11).

In practice, this is complicated by the fact that, based on measurements shown in 

Figure 6.2(a), we cannot assume system behavior passes through the origin. It’s best 

to defer the intercept question and simply determine which straight lines are 

consistent with observations.

Finding the “Best” Line and Uncertainty Range:

Important

Several approaches exist for line-fitting. The most rigorous statistical method 

(least squares) will be discussed later. Meanwhile, we’ll examine simpler 

mechanical procedures, starting with the time-honored practice of drawing the 

“best” straight line through points by eye.

Tip

This requires mechanical aids that don’t obscure half the data points. Avoid 

opaque rulers; use transparent straight edges or, better yet, dark thread that can 

be stretched across points and easily repositioned. If visually judging point trends 

is difficult, hold the graph at eye level and sight along the points—this makes 

clustering around a straight line or systematic deviations much more apparent 

than direct viewing.

Identify several significant lines: the “best” straight line by judgment, plus the 

limiting lines representing how far we can reasonably rotate the “best” line before it 
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no longer acceptably fits the data. These extremes provide uncertainty values for the 

slope.

If wide point scatter makes identifying best-fit and limiting lines difficult, remember 

that measured points represent samples from a continuous distribution band. The 

sparse population of this band (due to limited observations) can complicate line 

selection. Visualize the band populated by millions of potential readings the 

apparatus might produce, then estimate the center and edges of that distribution, 

allowing us to select appropriate lines.

In Figure 6.2(b), we might choose AB as the “best” line and determine that lines CD 

and EF would contain almost all possible points from an infinite measurement set. 

Lines CF and ED (not shown) would represent the steepest and shallowest slopes 

consistent with observations.

Once we’ve selected appropriate lines, determine their slopes numerically to calculate 

the desired parameter (like resistance R in our Ohm’s Law example). For slope 

calculation, angle is irrelevant—we need the quantitative relationship between 

measured variables. For a line like AB in Figure 6.3, identify precise coordinates 

where it crosses graph grid intersections near its endpoints. If these coordinates are 

(I₁, V₁) and (I₂, V₂), calculate:

𝑠𝑙𝑜𝑝𝑒 = (𝑉2 − 𝑉1)/(𝐼2 − 𝐼1) (61)

For our example, 𝑅 equals this slope directly. In more complex cases, we might need 

additional calculations involving other measured quantities to determine the final 

answer.

Perform this process three times: once for the “best” line (AB) and once each for 

upper and lower limiting lines (CF and ED). This gives the best value for R plus upper 

and lower limits beyond which we’re “almost certain” the true value doesn’t lie. 

Typically, these extreme values are roughly equidistant from the central value, 

allowing us to express the result as:

𝑅 = 𝑣𝑎𝑙𝑢𝑒 ± 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 (62)

Sometimes the “best” line and limiting lines won’t appear equally spaced, usually 

because too few points prevent good line assessment. While sometimes 

experimenters feel compelled to express asymmetric uncertainties as:

𝑣𝑎𝑙𝑢𝑒(+𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦1/ − 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦2) (63)

visual graph judgment rarely justifies such precision. If identifying a clear “best” line 

proves genuinely difficult, we can simply delineate the edges of the value band (lines 

ED and CF in Figure 6.3), calculate maximum and minimum slopes, and express the 

experimental result as the interval between these slopes, or as their average ± half 

their difference.
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If the desired answer isn’t directly equal to the slope, but requires calculation using 

additional quantities with their own uncertainties, combine the slope uncertainty 

with these other uncertainties using methods described in Chapter 2.

The significance of uncertainty values obtained from graphs depends on how we 

marked uncertainty on original data points. If the bars represented outer limits of 

possible variation (either subjectively assessed or 2Sₘ for statistical fluctuations), the 

slope limits have similar interpretation. If points were marked with 1Sₘ limits, the 

limiting slopes probably represent better than 68% probability because of the 

conservative approach used in drawing limiting lines.

This analysis assumes that actual data scatter falls within predicted uncertainty 

ranges. If scatter greatly exceeds expected uncertainty (due to unforeseen fluctuation 

sources), we may have difficulty establishing lines that contain “almost all” possible 

values with confidence. In such cases and for all precision work, least squares 

analysis (discussed later) becomes essential.

When selecting the three lines, deliberately exclude the origin from consideration, as 

system behavior at the origin may be one aspect we wish to examine. If the model 

should pass through the origin, check whether the area between limiting lines 

includes the origin. If so, the model and system show consistency at our precision 

level. Only if both limiting lines clearly intersect an axis on the same side of origin 

can we confidently identify an unexpected intercept.

If the model predicts an intercept from which we hope to determine some quantity, 

the intersection of the three lines with the relevant axis directly provides that 

intercept as: value ± uncertainty.

7.d. Handling Imperfect Model-System Correspondence

Important

When model and system correspond only partially, exercise care to avoid 

introducing systematic errors from these discrepancies into results. Consider first 

cases where measurements align with the model’s straight line only over limited 

ranges [Figures 6.1(b) and 6.1(c)].

Obviously, restrict slope evaluations to regions where system and model are 

compatible. Points systematically deviating from the straight line reflect physical 

circumstances not included in the model, making them inappropriate for model-based 

calculations. Disregard all points deviating systematically from straight-line behavior 

by amounts clearly exceeding estimated uncertainties and observed scatter, limiting 

slope and uncertainty calculations to the linear region.

Tip

A second consideration involves intercepts. Even when the model passes through 

the origin, graphs frequently show intercepts. Such deviations arise from various 
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causes, but many prove harmless. If the intercept-causing discrepancy affects all 

readings equally (like undetected zero error in an instrument or constant spurious 

EMF in an electrical circuit), the graph’s slope remains free from the systematic 

error that would otherwise contaminate results.

Therefore, design experiments so answers come from graph slopes, while quantities 

potentially subject to undetermined systematic errors appear as intercepts. This 

capability to provide answers free from many systematic error types represents one 

of graphical analysis’s principal advantages.

7.e. The Principle of Least Squares

Important

All previously described procedures share a common limitation—they rely on 

experimenter judgment. While these approaches are useful and common, they 

invite criticism that even when carefully applied, their numerical significance 

remains uncertain. Having a mathematical procedure to identify the “best” line 

for a dataset would free us from judgment-related insecurity and potentially 

provide insight into what “best” actually means while allowing more precise 

uncertainty calculation.

The method meeting these needs is based on the statistical principle of least squares. 

We’ll focus primarily on its application to straight-line fitting, though it can be 

extended to other functions.

Note

Consider a set of N (x,y) measurement pairs where uncertainty is confined to the 

y-dimension—we’ll assume x values are exactly known or sufficiently more 

precise than y values that x-dimension uncertainty can be neglected. This 

assumption is reasonable for many experimental situations where one variable is 

significantly more precise than the other. If both variables have comparable 

uncertainty, more complex treatments are needed (see Wilson’s text in the 

Bibliography).

Our mathematical procedure must answer: Which line on the x-y plane is “best,” and 

what does “best” mean? Least squares makes this determination based on vertical 

deviations of points from a candidate line. For line AB in Figure 6.4, consider vertical 

intervals between points and line (like P₁Q₁ and P₂Q₂). The “best” line minimizes the 

sum of squares of these deviations.

This criterion offers no automatic path to “truth” or “correct” answers—it’s simply 

one optimization criterion among many possibilities (we could minimize third powers 

or first powers of intervals, etc.). However, it can be proven that minimizing squared 

deviations produces smaller variance in resulting parameters (like slope) upon 

repeated sampling than any alternative criterion. This provides greater confidence in 
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least squares results than competing approaches, explaining its near-universal 

adoption.

Mathematically, we define the best line as that which minimizes:

∑
𝑖

(𝑃𝑖𝑄𝑖)
2 (64)

giving parameters (slope m and intercept b) for that line.

If our line equation is 𝑦 = 𝑚𝑥 + 𝑏, each deviation 𝛿𝑦𝑖 equals the difference between 

measured y value and the corresponding point on the line:

𝛿𝑦𝑖 = 𝑦𝑖 − (𝑚𝑥𝑖 + 𝑏) (65)

The least squares criterion seeks to minimize:

∑
𝑖

[𝑦𝑖 − (𝑚𝑥𝑖 + 𝑏)]2 = 𝜒 (66)

with conditions:

𝜕𝑀
𝜕𝑚 = 0 and 𝜕𝑀

𝜕𝑏 = 0

Solving these equations (full derivation in Appendix A2) yields formulas for the best-

fit line parameters:

𝑚 = 𝑁 ∑(𝑥𝑖𝑦𝑖) − ∑ 𝑥𝑖 ∑ 𝑦𝑖

𝑁 ∑ 𝑥2
𝑖 − (∑ 𝑥𝑖)

2 (67)

𝑏 = ∑ 𝑥2
𝑖 ∑ 𝑦𝑖 − ∑ 𝑥𝑖 ∑(𝑥𝑖𝑦𝑖)
𝑁 ∑ 𝑥2

𝑖 − (∑ 𝑥𝑖)
2 (68)

We’ve now replaced potentially questionable visual judgment with a mathematical 

procedure yielding results of well-defined significance and universal acceptability. 

Since this method has statistical foundations, we can expect more precise uncertainty 

calculations. The least squares principle immediately provides standard deviations for 

slope and intercept, giving uncertainties with known statistical significance.

These standard deviations are calculated using the standard deviation of y-value 

deviations from the best line, Sy:

𝑆𝑦 = √∑ (𝛿𝑦𝑖)
2

𝑁 − 2
(69)

Don’t worry about the N-2 denominator rather than the familiar N or N-1; it results 

from applying standard deviation definition to line positioning on a plane. The 

standard deviations for slope and intercept are:

𝑆𝑚 = 𝑆𝑦√
𝑁

𝑁 ∑ 𝑥2
𝑖 − (∑ 𝑥𝑖)

2 (70)
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𝑆𝑏 = 𝑆𝑦√
∑ 𝑥2

𝑖

𝑁 ∑ 𝑥2
𝑖 − (∑ 𝑥𝑖)

2 (71)

Full derivations appear in Appendix A2.

These standard deviations, combined with m and b values, determine intervals with 

normal statistical interpretation—one standard deviation gives 68% probability of 

containing the true value, two standard deviations 95%, etc. A key least squares 

advantage is providing statistically significant uncertainty values for slope and 

intercept. These values derive objectively from actual point scatter, independent of 

any optimistic claims about measurement precision.

Appendix A2 also describes an extension for unequally precise data points, allowing 

greater weight for more precise measurements. This “weighting” procedure applies 

whenever we combine observations of unequal precision, even for simple tasks like 

finding the mean of unequal-precision values. Weighted mean and weighted least-

squares calculation formulas appear in Appendix A2.

7.f. Least-Squares Fitting for Nonlinear Functions

Note

The procedures used for determining best-fit straight line parameters can, in 

principle, apply to nonlinear functions. We can write analogous deviation 

equations for any function and use similar minimization requirements for 

parameters in our chosen model. If resulting equations are solvable, we can find 

parameter values as we did for straight lines.

Frequently, however, these equations resist straightforward solution. In such cases, 

we abandon analytical approaches in favor of iterative computer solutions. We 

construct trial functions, calculate squared-difference sums, and progressively vary 

function parameters until finding the minimum sum. Computer-based methods for 

this process are described in Draper and Smith’s text (Bibliography). When possible, 

testing models in linear form remains simpler.

In all cases, experimenters are responsible for choosing appropriate functions—least 

squares merely determines which parameter values within a chosen function class 

best fit the observations.

7.g. Important Cautions When Using Least Squares

Warning

Least squares mathematical procedures are entirely objective and impartial. 

Equations for linear fitting will drive a straight line through any dataset, 

regardless of whether a straight-line function is appropriate. If the experiment 

produces observations clearly showing breakdown of a linear model (Figure 6.5), 

blindly applying least squares to all observations will yield parameters for line AB 
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that have no significance for either model or system. Thoughtless application of 

least squares methods must be scrupulously avoided.

Important

This warning is particularly important given easy access to calculators and 

computers that generate least squares parameters for any inputted numbers with 

a few button presses. Remember that we compare straight lines with observations 

because we’ve judged this comparison reasonable. Therefore, never use least 

squares procedures before plotting observations and visually confirming linear 

fitting’s appropriateness. As mentioned earlier, we may need to exclude 

observations outside the model’s scope from best-line determination.

Only after carefully considering the entire situation graphically and visually, and 

confirming linear fitting’s appropriateness over all or part of the observation range, 

are we justified in applying least squares. Ignoring this warning can cause serious 

experiment interpretation errors.

7.h. Finding Functions When No Model Exists

Note

Our previous discussion assumed we possessed a model to compare with the 

system. While this is common, sometimes we encounter observation sets with no 

available model—perhaps when researching previously unobserved phenomena or 

studying systems too complex for theoretical modeling. When plotted, such 

observations typically show curves with no readily identifiable pattern. Without a 

model, what approaches are available?

One option is finding functions with some correspondence to observations. This can 

be valuable in complex systems where theoretical modeling seems hopeless. Even if 

the “model” is merely a mathematical function restating the system’s behavior, it 

facilitates computer processing and enables interpolation, extrapolation, and similar 

operations. Such empirical models help predict national economic responses to 

taxation changes or determine temperatures from resistance thermometer calibration 

curves.

Warning

In simpler systems where theoretical modeling seems possible, functions showing 

good correspondence with observations may guide model building by suggesting 

underlying physical processes. However, caution is essential. Finding a function 

consistent with observations at a particular precision level doesn’t “prove” we’ve 

discovered the “right” function. Different function types often show similar 

behavior over limited variable ranges, and guidance from incorrectly identified 

functions can be misleading, potentially impeding theoretical progress for years. 
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The physics history contains many examples where researchers failed to 

recognize empirical function choices must remain provisional.

With appropriate caution regarding potential limitations, here are some common 

function-finding approaches:

7.h.i. Power Law Functions:

Tip

As discussed in experiment planning chapters, logarithmic plotting helps identify 

power law relationships. Consider the function:

𝑦 = 𝑥𝑎 (72)

Taking logarithms of both sides:

𝑙𝑜𝑔𝑦 = 𝑎 · 𝑙𝑜𝑔𝑥 (73)

A graph of log y versus log x produces a straight line with slope a. To test 

whether observations follow a power law, plot them as log y versus log x. If 

points align with a straight line, we can conclude a simple power function 

(positive/negative, integral/fractional as determined by the graph) fits 

observations well. The appropriate power value comes from the graph’s slope, 

with uncertainty limits depending on plotted point uncertainties.

Such graphs can use ordinary paper (plotting actual log x and log y values) or 

logarithmic graph paper (with rulings proportional to logarithms, allowing direct 

plotting of original values).

7.h.ii. Exponential Functions:

Tip

Many physical phenomena follow exponential relationships:

𝑦 = 𝑎𝑒𝑏𝑥 (74)

Taking natural logarithms:

ln 𝑦 = ln 𝑎 + 𝑏𝑥 (75)

This creates a straight line when plotting ln y versus x (a “semi-log plot”). If we 

suspect an exponential function might apply to the system, create a semi-log plot 

using either ordinary graph paper (calculating ln y values) or semi-log paper 

(with one logarithmic and one linear scale). Appropriate a and b values come from 

the intercept and slope, with uncertainties determined by measurement precision.

7.h.iii. Polynomial Approximations:

Note
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If neither power laws nor exponential functions adequately match observations, 

the chances of finding a more complex function that fits well are slim. In such 

cases, polynomial approximations often prove useful:

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ (76)

While such representations essentially admit ignorance about underlying system 

mechanisms, they still offer empirical modeling advantages—facilitating 

computation and providing bases for interpolation and extrapolation.

Finding appropriate coefficients for such expansions typically employs the least 

squares principle. As noted earlier, computational difficulty increases rapidly with the 

number of terms needed for satisfactory correspondence. Fuller discussion appears in 

Draper and Smith’s text (Bibliography).

Similar approaches apply when observation scatter isn’t severe and highest precision 

isn’t essential. Finite difference calculus techniques can be applied to observations, 

and difference tables used for interpolation, extrapolation, or polynomial fitting. 

Comprehensive discussion appears in texts by Whittaker and Robinson and by 

Hornbeck (Bibliography), with elementary treatment in Appendix A3.

7.i. Assessing Overall Experimental Precision

Important

At experiment initiation, we estimated likely uncertainties to guide the 

experimental approach. After completion, we should retrospectively evaluate 

actually achieved precision through critical results assessment. The specific 

uncertainty type matters less than clearly stating what we’re reporting—whether 

estimated ranges, standard deviations, standard deviations of means, or other 

measures.

Warning

For meaningful application, overall uncertainty figures must be realistic and 

honest, even when experimental outcomes are less favorable than hoped. Include 

all identifiable uncertainty sources in the assessment. If balance points cannot be 

identified within 2-3 mm or slide wire non-uniformities introduce errors, claiming 

0.2% precision for slide-wire potentiometer readings becomes meaningless, 

regardless of millimeter-graduated scales.

Known systematic error contributions should be excluded at this stage, as appropriate 

measurement corrections should already have been applied. However, suspected 

systematic error sources whose contributions cannot be accurately evaluated should 

be described with appropriate allowances in overall uncertainty ranges. Final 

statement format depends on circumstances:

7.i.i. For Results Based on Measurement Sets:
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Tip

The best quantity to report is standard deviation of the mean, which has 

recognizable numerical significance. Sometimes standard deviation itself is 

quoted. Always specify sample size so 𝜎 estimate reliability can be judged.

7.i.ii. For Results from Single Calculations:

If graphical analysis wasn’t possible and results come algebraically from several 

measured quantities, use Chapter 3 methods to calculate either outer uncertainty 

limits or standard deviations.

7.i.iii. For Results from Graphical Analysis:

Note

If the straight line was established through least squares, constant uncertainties 

(m and b) will have been directly determined. These uncertainties advantageously 

derive from actual point scatter, independent of estimated uncertainties. (This 

doesn’t mean we should skip plotting uncertainties or drawing graphs when 

using least squares—as emphasized earlier, graphs with plotted uncertainties 

remain essential for judging model-system correspondence ranges before least 

squares calculations).

If we’ve drawn the line by eye, the limiting possibility lines will give slope and 

intercept ranges. This slope uncertainty may need combining with other quantity 

uncertainties before stating final answer uncertainty.

Tip

As mentioned previously, the specific uncertainty type matters less than clearly 

stating what we’re reporting. When working through lengthy uncertainty 

calculations, we can simplify by dropping insignificant contributions—adding 

0.01% uncertainty to 5% offers negligible benefit since the 5% value lacks three-

digit precision. Final uncertainty statements rarely justify more than two 

significant figures; only highly significant statistical work warrants greater 

precision.

Once we’ve determined overall answer uncertainty, consider how many significant 

figures to retain. This was covered in Section 2.11, but bears repeating in the context 

of experiment evaluation.

Important

No unique answer exists for significant figure questions, but generally avoid 

retaining figures beyond the first uncertain digit. For example, 5.4387 ± 0.2 should 

be reported as 5.4 ± 0.2, since uncertainty in the tenths position makes 
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subsequent digits meaningless. If uncertainty is known more precisely, retaining 

one additional figure might be justified—if uncertainty were 0.15, reporting 5.44 ± 

0.15 would be valid.

When reporting percentage precision, significant figures are automatically implied. A 

measurement reported as 527.64182 ± 1% implies absolute uncertainty of 5.2764. 

However, since precision is quoted to just one significant figure (1%, not 1.000%), the 

uncertainty itself warrants only one significant figure. Calling it 5 implies the tens 

digit in the original number is uncertain by 5, making subsequent digits meaningless. 

The measurement should be quoted as 528 ± 5 or 528 ± 1%.

For sample means, significant figures depend on the mean’s standard deviation, 

which in turn depends on the standard deviation’s standard deviation.

Finally, always ensure answer and uncertainty expressions are consistent—neither 

“16.2485 ± 0.5” nor “4.3 ± 0.0002” represents good practice.

7.j. Understanding Correlation

Note

Thus far, we’ve considered experimental interpretation involving relatively 

precise observations and satisfactory models. Reality is often messier, and much 

modern experimentation is less clear-cut than previous sections might suggest.

Many scientific fields deal with subtle phenomena where effects can be partially or 

completely masked by statistical fluctuations or other perturbations. In these 

scenarios, detailed model-system comparisons may be impossible—we might struggle 

even to establish whether the effect we’re studying exists at all. This scenario 

commonly occurs in biological, medical, and environmental studies.

Consider familiar public health debates about smoking’s role in lung cancer, low-level 

radiation’s relationship to leukemia, or dietary influences on cardiovascular disease. 

In these contexts, “proof” frequently enters discussion: “We haven’t proved smoking 

causes lung cancer” or “Can we prove heart attacks are less frequent with margarine 

versus butter consumption?”

These scenarios operate in fundamentally different domains from our earlier 

experimental approaches. Understanding what we mean by terms like “proof” and 

“cause” becomes critical.

Important

Consider two experimental scenarios. First, measuring current through a resistor 

as potential difference varies, producing results like Figure 6.6(a). Have we 

“proved” current is “caused” by potential difference? The current certainly differs 

between low and high potential differences by amounts far exceeding 

measurement uncertainty, giving confidence the variation is real. Was this 
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variation “caused” by potential difference changes? We observed current increases 

with potential difference increases, but theoretically, current might be unrelated 

to potential difference, with increases caused by some entirely separate factor like 

atmospheric pressure, making the apparent relationship purely coincidental.

Philosophers have warned for centuries that simultaneous events aren’t necessarily 

causally related. However, accumulated experience with this experiment, involving 

multiple repetitions and careful control of other variables, gradually convinces us 

potential difference and current are genuinely related. Only philosophical purists 

would dispute that potential difference causes current flow.

The situation differs dramatically in less clear-cut cases. Another experiment might 

yield results like Figure 6.6(b), typical when studying, for instance, university student 

cold incidence versus daily vitamin C consumption. Can we conclude cold frequency 

depends on vitamin C dosage? We might conduct a well-designed experiment with 

100 students receiving vitamin C supplements versus a control group receiving 

placebos, but multiple confounding factors could mask any real effect—or create 

apparent effects where none exist.

7.k. Glossary

7.l. Problems

Exercise 54: 

A student measures the voltage across a resistor at different currents and obtains 

the following data:

Current (mA) Voltage (V)

10 ± 1 2.1 ± 0.1

20 ± 1 4.0 ± 0.1

30 ± 1 6.2 ± 0.1

40 ± 1 8.1 ± 0.1

50 ± 1 10.0 ± 0.1

Draw a best-fit line through the data and determine the resistance with its 

uncertainty using the graphical method described in this chapter.

Exercise 55: 

Using the data from the previous problem, apply the least squares method to find: 

a. The best-fit slope and intercept b. The standard deviations of the slope and 

intercept c. Compare your results with those obtained from the graphical method.
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Exercise 56: 

An experiment investigating the relationship between pendulum period 𝑇  and 

length 𝐿 yields the following results:

Length (cm) Period (s)

20 0.91

40 1.28

60 1.54

80 1.78

100 1.99

The theoretical model predicts 𝑇 = 2𝜋√𝐿/𝑔. Assess the correspondence 

between this model and the experimental data, and determine a value for 𝑔 with 

appropriate uncertainty.

Exercise 57: 

A student plots voltage versus current for a circuit element and obtains a straight 

line with a non-zero intercept on the voltage axis. List three possible physical 

causes for this unexpected intercept and explain how each would affect the 

interpretation of the results.

Exercise 58: 

The following data relates the intensity of light at various distances from a point 

source:

Distance (m) Intensity (W/m²)

1.0 100

1.5 44

2.0 25

2.5 16

3.0 11

Use a logarithmic plot to determine if this data follows a power law relationship 

𝐼 = 𝑘𝑑𝑛, and find the values of 𝑘 and 𝑛.
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Exercise 59: 

A radioactive sample produces the following count rates at different times:

Time (min) Count rate (counts/s)

0 1000

5 607

10 368

15 223

20 135

Use a semi-log plot to verify the exponential decay model and determine the half-

life of the sample.

Exercise 60: 

When plotting experimental data, you observe that the scatter of points about the 

best-fit line is significantly larger than expected from your estimated 

measurement uncertainties. Describe three approaches you might take to address 

this situation and explain the advantages and limitations of each.

Exercise 61: 

A study finds a strong correlation between ice cream sales and drowning 

incidents. Explain why correlation does not imply causation in this case, and 

describe what additional information or experimental design would be needed to 

establish a causal relationship.
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8. Writing Scientific Reports

8.a. Why Quality Scientific Writing Matters

Important

The value of excellent scientific writing cannot be overstated. Even 

groundbreaking experimental work loses its impact if poorly communicated. 

While verbal presentations occasionally suffice, most scientific communication 

happens through written documents. Developing strong writing skills should be 

considered a fundamental component of the experimental toolkit.

Note

Learning to write well cannot be reduced to a simple checklist. Each person 

develops their own distinctive writing style through practice. The introductory 

physics laboratory provides an excellent opportunity to develop these skills. Our 

writing styles may differ, but clarity remains the essential common element that 

makes diverse approaches valuable rather than problematic.

When approaching scientific report writing, one guiding principle stands above all 

others: focus on the reader. Whether preparing an internal technical document or a 

manuscript for publication, prioritize the needs of the person who will read the work. 

From their perspective, we are communicating across distance and time, with only 

written words to convey the message. We cannot clarify misunderstandings or add 

explanations as they read. The report must stand independently and communicate 

effectively on first reading. The reception of the work, its scientific impact, and 

potentially professional advancement may hinge on how effectively readers 

understand the report during their brief engagement with it. This perspective should 

emphasize the importance of taking writing seriously.

Contemporary scientific writing has largely moved away from impersonal, passive 

constructions. Instead, straightforward language often works best: “We measured the 

fall time using a millisecond-precision electronic timer.” With no single “correct” 

approach to report writing, choose language that communicates most clearly and 

engagingly. For additional guidance on effective writing, consider consulting Strunk 

and White’s classic text referenced in the Bibliography.

Let’s examine each report section from the reader’s perspective.

8.b. Title

Important

The title typically provides readers their first impression of the work. Since 

potential readers are usually busy professionals with competing demands on their 

attention, the title must be informative, appropriate, and engaging.

Tip
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While keeping it concise, make the topic explicit. For instance, if measuring a 

fluid’s specific heat using continuous-flow calorimetry, a straightforward title 

works well: “Measurement of the Specific Heat of Water Using Continuous-Flow 

Calorimetry.” This title effectively answers three key questions:

1. Is this experimental or theoretical work?

2. What specific topic does it address?

3. What methodology was employed?

Addressing these elements typically results in an effective title.

8.c. Format

Note

The following sections analyze report components in detail. Note that the 

subsection headers discussed here should not appear in the actual report. Most 

standard physics laboratory reports require only minimal sectioning.

Important

Essential sections typically include:

INTRODUCTION

PROCEDURE

RESULTS

DISCUSSION

These core divisions provide a solid organizational framework. Format headings 

prominently, perhaps using capital letters. Use subsections sparingly, only when 

necessary for clarity in longer or more complex reports. Depending on 

experimental requirements, we might include additional main sections such as:

THEORY SAMPLE PREPARATION UNCERTAINTY CALCULATIONS

The report should present a clear, logical progression of ideas. If detailed 

information might disrupt this flow, consider placing it in an appendix. This 

approach preserves the information for interested readers while maintaining the 

report’s coherence.

Now let’s examine each section’s specific requirements.

8.d. Introduction

Important

An effective introduction typically includes these components in sequence:

• Topic Statement

• Review of Existing Information

January 01, 2025 78 of 122



| Veillette, 2025

• Application of Information to Specific Experiment

• Summary of Experimental Intention

8.d.i. Topic Statement:

With a well-crafted title having captured reader attention, remember that readers 

likely begin with minimal knowledge of the specific experiment. Rather than 

immediately diving into experimental details, begin with a broad framing statement. 

For example: “It is possible to measure gravitational acceleration by observing a 

simple pendulum’s oscillation.” This approach guides readers from their initial 

unfamiliarity to a clear understanding of the work’s focus.

8.d.ii. Review of Existing Information:

At this point, readers need contextual background. Provide a concise summary of 

relevant knowledge, potentially including historical context or previous experimental 

findings. Two elements must appear in every experimental report: a clear description 

of the system and experimental conditions, and an explanation of the theoretical 

model(s) employed.

Keep this background information concise to maintain focus on the main argument, 

while ensuring readers have sufficient context to understand the work. Standard 

theoretical derivations should be omitted, but the resulting equations and their 

limitations should be included. For example: “It can be demonstrated that for 

vanishingly small oscillation amplitudes, a simple pendulum (modeled as a point 

mass on a massless, inextensible string) has a period given by…”. If readers might 

need derivation details, cite an appropriate reference.

8.d.iii. Application of Information to Specific Experiment:

Having established context, readers will wonder how this background relates to the 

specific experiment. Explain how general principles apply to the particular work. 

This often involves showing how theoretical equations can be transformed into a 

useful experimental framework, such as rearranging equations into straight-line form 

for graphical analysis. Identify how system-model comparisons will be made and 

what information can be extracted from parameters like slopes and intercepts. This 

preparation ensures readers understand how the final results will be obtained.

8.d.iv. Summary of Experimental Intention:

Conclude the introduction by summarizing the specific experimental goals. For 

example: “Thus, by measuring refractive index variation with wavelength, we can 

test Cauchy’s model using n versus 1/𝜆² graphical analysis. The Cauchy coefficients 

A and B for our glass specimen will be determined from the graph’s intercept and 

slope, respectively.” This summary provides readers with a framework for 

understanding the experimental procedure that follows, particularly valuable in 

complex reports with extended introductions.
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8.d.v. Statement of Experimental Purpose:

While not mentioned above, include a clear purpose statement somewhere in the 

introduction. Its placement depends on context. For familiar topics, it can effectively 

serve as the opening topic statement: “The purpose of this experiment is to measure 

gravitational acceleration by timing a freely falling object.” For complex topics, the 

purpose statement might better follow explanatory material: “…and the purpose of 

this experiment is to determine coefficient k in equation 10.” The statement’s 

placement is flexible, provided it appears where readers can readily comprehend it.

A well-crafted introduction accomplishes several goals: directing reader attention to 

the research area, providing necessary background, explaining how this context 

applies to the specific work, and clearly stating experimental objectives. This 

prepares readers for understanding the experimental process.

8.e. Procedure

Tip

Like the introduction, the procedure section should progress from general to 

specific. Diving immediately into technical details would confuse readers who 

lack an overview of the approach. Maintain the same consideration for reader 

comprehension here as in the introduction, again moving from broader concepts 

to specific details.

8.e.i. Outline of Procedure:

Begin by providing an overview of the experimental approach. If the experiment 

measured copper wire resistance variation with temperature between 20°C and 100°C, 

state this clearly to establish a framework for subsequent details. Starting instead 

with specific connections and instrument readings would quickly lose reader 

attention without this contextual foundation.

8.e.ii. Specific Measurement Details:

With the general experimental approach established, readers can now appreciate 

specific measurement methodologies. Systematically describe how each required 

quantity was measured. Ensure no significant measurement approach is omitted; 

readers need to know whether we used a millisecond-precision electronic timer or a 

0.2-second resolution stopwatch. Standard techniques may require only brief 

mention: “Resistances were measured using a Wheatstone bridge accurate to 0.01%.” 

We might discuss measurement accuracy here, while reserving discussion of overall 

experimental precision for later sections.

8.e.iii. Precautions:

After describing measurement methods, readers may wonder about potential errors 

inherent in these techniques. Assure them that we anticipated these issues and took 

appropriate precautions. Exercise judgment here—routine precautions need not be 
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elaborated, but special measures taken to address significant error sources deserve 

mention before concluding this section.

8.e.iv. Apparatus Diagrams:

Well-executed apparatus diagrams substantially enhance report quality. While 

professional publications require polished illustrations, even student reports benefit 

from careful diagramming. Use straightforward tools like rulers to ensure neatness, 

with clear labels to aid comprehension. Good diagrams save considerable explanatory 

text and provide details that would be tedious to describe verbally. Reference 

diagrams at appropriate points in the text; an overview diagram works particularly 

well when introducing the procedure section: “Using the apparatus shown in Figure 

1, we measured ball bearing fall times over heights ranging from 20 cm to 150 cm.” 

Figure 1 demonstrates an acceptable apparatus diagram.

Figure 11:  A free-fall apparatus diagram illustrating the experimental setup for 

measuring the fall times of objects dropped from various heights.

8.f. Results

Important

By now, readers understand the experimental context and methodology, and are 

ready for the findings. Since most valuable experiments examine relationships 

between variables, results often benefit from tabular presentation, particularly 

when not directly comparing to mathematical models.

Tip

Maintain high standards of clarity in tables, with comprehensive headers 

including variable names, symbols, and measurement units. Include uncertainty 
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values with measurements unless addressed separately. Properly identify tables 

with numbers and titles.

8.f.i. Measured Values:

By now, readers understand the experimental context and methodology, and are 

ready for the findings. Since most valuable experiments examine relationships 

between variables, results often benefit from tabular presentation, particularly when 

not directly comparing to mathematical models. Maintain high standards of clarity in 

tables, with comprehensive headers including variable names, symbols, and 

measurement units. Include uncertainty values with measurements unless addressed 

separately. Properly identify tables with numbers and titles. Reference any graphical 

representations straightforwardly: “Figure 2 shows time of fall versus height.” Place 

exceptionally detailed data tables in appendices to maintain narrative flow. Following 

primary results tables, list all other relevant measured quantities with their 

uncertainties and units.

8.f.ii. Description of Measurement Uncertainties:

Clearly specify what kind of uncertainties the values represent—whether estimated 

maximum limits or statistical measures like standard deviations. For statistical values, 

include the sample size. When reporting calculated quantities derived from 

measurements, explain the uncertainty calculation method without necessarily 

including arithmetic details, provided the approach is clear.

8.f.iii. Computation of Final Answer:

Well-designed experiments typically yield final results through graphical analysis. 

Explain the analytical approach explicitly. Even for straightforward analyses, be 

specific: “We determined resistance from the slope of the V versus I graph (Figure 3) 

between 0.5A and 1.5A.” If the result required additional calculations beyond 

graphical values, state this clearly: “We calculated the viscosity coefficient using the 

Q versus P graph slope combined with measured values of a and ℓ according to 

Equation (3).”

Similarly, explain the approach to uncertainty calculation. Whether we visually 

estimated slope ranges, combined multiple uncertainty sources, or employed least-

squares methods with statistical analysis, describe the approach without burdening 

readers with extensive calculations. If detailed calculations seem necessary, place 

them in an appendix where interested readers can access them without disrupting the 

main narrative.

8.g. Graphs

Important

The graphs created during analysis served as computational tools, potentially 

requiring large formats and precise drawing for accurate measurement. However, 
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graphs included in the report serve a different purpose—they illustrate results 

rather than providing readers raw analytical material. They help readers visualize 

system behavior and evaluate interpretations.

Tip

Report graphs should be clean, clear, and uncluttered. Plot points with visible 

uncertainty indicators (boxes or crosses) and clearly label axes. Identify 

uncertainty types and axis symbols directly on or near the graph to avoid forcing 

readers to search the text for interpretation.

The graphs created during analysis served as computational tools, potentially 

requiring large formats and precise drawing for accurate measurement. However, 

graphs included in the report serve a different purpose—they illustrate results rather 

than providing readers raw analytical material. They help readers visualize system 

behavior and evaluate interpretations.

Figure 12:  An example of a well-formatted results graph with clearly labeled axes, 

visible uncertainty indicators (error bars), and a properly identified best-fit line.

Report graphs should be clean, clear, and uncluttered. Plot points with visible 

uncertainty indicators (boxes or crosses) and clearly label axes. Identify uncertainty 

types and axis symbols directly on or near the graph to avoid forcing readers to 
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search the text for interpretation. Avoid cluttering graphs with calculation details. 

Each graph should have a descriptive title or extended caption that can also 

incorporate important technical details. Figure 2 demonstrates acceptable graph 

formatting.

8.h. Discussion

Important

The discussion constitutes an integral report component rather than an 

afterthought. Here we address the fundamental experimental question—the 

relationship between system and model. This comparison’s outcome represents a 

critical experimental result that readers eagerly anticipate.

Tip

Having evaluated results objectively during analysis, present an unbiased 

assessment of system-model correspondence. Make a straightforward factual 

statement about what we observed.

8.h.i. Comparison Between Model and System:

The discussion constitutes an integral report component rather than an afterthought. 

Here we address the fundamental experimental question—the relationship between 

system and model. This comparison’s outcome represents a critical experimental 

result that readers eagerly anticipate.

Having evaluated results objectively during analysis, present an unbiased assessment 

of system-model correspondence. Make a straightforward factual statement about 

what we observed. For example: “The model described by Equation (1) predicts a 

linear Q versus P relationship passing through the origin. Our experimental results 

show linear behavior through part of the range, but with a non-zero Q-axis intercept. 

Additionally, at higher P values, measurements systematically deviate from linearity 

beyond measurement uncertainty.”

Begin with this objective assessment before proceeding to interpretation. Since 

system-model comparison represents the experiment’s fundamental purpose, clearly 

state the actual results before introducing subjective elements.

This factual statement will naturally raise questions that require attention.

8.h.ii. Consequences of Discrepancies Between Model and System:

Readers will wonder whether model-system discrepancies affected the final results. 

Address how we protected conclusions from potential errors arising from these 

discrepancies. Explain, for instance, how an unexpected intercept didn’t compromise 

results derived solely from slope analysis, or how nonlinearity didn’t affect 

conclusions drawn from the linear region. Demonstrate how the experimental 

approach safeguarded results against such complications.
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8.h.iii. Speculation Concerning Discrepancies Between System and Model:

Earlier report sections emphasized objective reporting of observations and processes. 

Now, however, we should introduce thoughtful interpretation. Having informed 

readers about system-model correspondence and protected results from discrepancy-

related errors, we’ve fulfilled core experimental responsibilities. However, readers 

will naturally be curious about any observed discrepancies. Since we selected a model 

expected to match the system closely, discrepancies warrant explanation. As the 

people most familiar with the experiment, we’re uniquely positioned to interpret 

unexpected observations.

Some discrepancies have readily identifiable causes. Flow rate measurements 

deviating from linearity at high pressure differences might confidently be attributed 

to turbulence onset. If detecting turbulence was an experimental objective, this 

observation fulfills the purpose. In other cases, more extensive interpretation may be 

needed. If measuring viscosity was the primary goal, readers might question why we 

didn’t avoid conditions where laminar flow theory fails. Perhaps turbulence appeared 

at unexpectedly low pressures; candidly acknowledge this and consider potential 

causes.

When confronting genuinely puzzling discrepancies, speculation remains valuable 

even if limited. Our insights, even tentative ones, likely benefit other researchers 

given direct experimental experience. Conversely, if we cannot offer constructive 

ideas despite careful analysis, honest acknowledgment of unresolved discrepancies 

between well-established systems and models can itself contribute meaningfully to 

scientific discourse.

When speculating about discrepancies, maintain scientific responsibility. Rather than 

offering disconnected hypotheses, develop interpretations logically connected to 

observed patterns. For instance: “The T² versus m plot’s non-zero intercept at m=0 

suggests the presence of additional unaccounted mass in our system.” Identifying the 

specific source is less critical than recognizing the logical implications of 

observations. Such reasoned inference facilitates further investigation by providing a 

structured framework for subsequent research.

8.i. Glossary

8.j. Problems

Exercise 62: 

For each of the following experiments, write an appropriate title that addresses 

the three key questions: (1) Is this experimental or theoretical work? (2) What 

specific topic does it address? (3) What methodology was employed?

a. Measuring the speed of sound in air using resonance tubes b. Investigating how 

temperature affects the resistance of a copper wire c. Determining the focal length 

of a converging lens using object-image distances
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Exercise 63: 

A student writes the following introduction for a pendulum experiment:

“We measured the period of a pendulum at different lengths. The equation is 𝑇 =
2𝜋√𝐿/𝑔. We got good results.”

Identify the deficiencies in this introduction and rewrite it to include all essential 

components: topic statement, review of existing information, application to the 

specific experiment, and summary of experimental intention.

Exercise 64: 

The following procedure description appears in a lab report:

“We set up the circuit and measured the voltage and current. Then we changed 

the resistance and repeated.”

Explain why this description is inadequate for a scientific report and describe 

what additional information should be included for reproducibility.

Exercise 65: 

A student presents a graph with the following characteristics:

• Axis labels show only “V” and “I” without units

• Data points are shown but without error bars

• The scale starts at zero for both axes, leaving most of the graph area empty

• No title or caption is provided

List the improvements needed to make this an acceptable scientific graph and 

explain why each change is important.

Exercise 66: 

After measuring the acceleration due to gravity and obtaining 𝑔 = 9.60 ± 0.15 m/

s², a student writes in the discussion:

“Our result of 9.60 m/s² is wrong because it should be 9.81 m/s². The experiment 

failed due to errors.”

Critique this discussion and rewrite it to demonstrate proper objective analysis of 

experimental results.
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Exercise 67: 

Describe the essential elements that should be included in an apparatus diagram 

for an experiment measuring the specific heat of a metal using the method of 

mixtures. Explain how each element contributes to the reader’s understanding.

Exercise 68: 

A student has collected the following data for a cooling curve experiment and 

needs to present it in a report:

• 20 temperature measurements taken at 30-second intervals

• Each measurement has an uncertainty of ±0.5°C

• The initial temperature was 95°C and the final was 25°C

Describe how this data should be presented in the Results section, including 

recommendations for tables, graphs, and uncertainty notation.

Exercise 69: 

In an experiment to verify Snell’s law, a student finds that the measured refractive 

index of glass is consistently 3% higher than the accepted value, despite the 

uncertainty being only 1%. Write a paragraph for the Discussion section that 

appropriately addresses this discrepancy, following the guidelines for speculation 

about model-system differences.
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9. Appendix 1: The Gaussian Distribution - Mathematical Properties 

and Derivation

9.a. The Equation of the Gaussian Distribution Curve

Let’s derive the equation that describes the Gaussian distribution, beginning with a 

fundamental model of random variation.

Consider a quantity whose true value is 𝑋, but when measured, it’s subject to 

random uncertainty. We’ll model this uncertainty as arising from many small, 

independent fluctuations that can be either positive or negative with equal 

probability.

Specifically, imagine that our measurement is affected by 2𝑛 small fluctuations, each 

with magnitude 𝐸. Each fluctuation has equal probability of being positive or 

negative. The measured value 𝑥 can therefore range from 𝑋 − 2𝑛𝐸 (if all fluctuations 

are negative) to 𝑋 + 2𝑛𝐸 (if all are positive).

Note

Why this model makes sense

This model reflects many real-world measurement situations. Think about 

measuring the length of an object with a ruler - your eye position, slight 

movements of your hand, tiny variations in lighting, and many other small factors 

all contribute small random errors to your measurement.

What we want to determine is the probability distribution for observing a particular 

deviation 𝑅 within this range of possible values. This probability depends on how 

many different ways a specific deviation can occur.

9.a.i. Understanding the Combinatorial Basis:

Think about extreme deviations first. A deviation of exactly +2𝑛𝐸 can happen in 

only one way - when all 2𝑛 fluctuations are positive. Similarly, a deviation of −2𝑛𝐸 

also happens in only one way.

A deviation of (2𝑛 − 2)𝐸 is more likely because it can happen whenever exactly one 

of the fluctuations is negative (and the rest positive). Since any one of the 2𝑛 

fluctuations could be that negative one, there are 2𝑛 different ways this deviation 

could occur.

More generally, if we want a total deviation 𝑅 equal to 2𝑟𝐸 (where 𝑟 ≤ 𝑛), this 

means that out of our 2𝑛 fluctuations, (𝑛 + 𝑟) must be positive and (𝑛 − 𝑟) must be 

negative. The number of ways to select (𝑛 + 𝑟) positions from 2𝑛 positions is:

(2𝑛)!
(𝑛 + 𝑟)!(𝑛 − 𝑟)!

(77)
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This quantity represents the number of possible arrangements that yield our desired 

deviation. To convert this to a probability, we multiply by the probability of getting 

any specific arrangement of (𝑛 + 𝑟) positive and (𝑛 − 𝑟) negative fluctuations, which 

is:

(1
2
)

𝑛+𝑟
(1

2
)

𝑛−𝑟
= (1

2
)

2𝑛
(78)

The probability of deviation 𝑅 is therefore:

(2𝑛)!
(𝑛 + 𝑟)!(𝑛 − 𝑟)!

(1
2
)

2𝑛
(79)

9.a.ii. Simplifying with Stirling’s Approximation:

To evaluate our expression for large 𝑛, we need Stirling’s approximation. Here’s why 

this approximation works:

Consider that

∫
𝑛

1
ln 𝑥 𝑑𝑥 = [𝑥 ln 𝑥 − 𝑥]𝑛1 = 𝑛 ln 𝑛 − 𝑛 + 1 (80)

The integral approximates the sum ln 1 + ln 2 + ln 3 + … + ln 𝑛, which equals 

ln(𝑛!).

Figure 13:  The area under the curve of ln(x) approximates the sum of logarithms, 

forming the basis for Stirling’s approximation of n!.

Therefore:
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ln(𝑛!) ≈ 𝑛 ln 𝑛 − 𝑛 (81)

𝑛! ≈ 𝑒−𝑛𝑛𝑛 (82)
This gives us the basic form, though the complete approximation includes the 

√
2𝜋𝑛 

factor.

9.a.iii. The Continuous Limit:

Important

As 𝑛 becomes very large, our discrete model approaches a continuous distribution 

- the Gaussian.

Applying Stirling’s approximation to our probability expression and taking the limit 

as 𝑛 approaches infinity (with appropriate simplifications that involve several 

algebraic steps), we eventually obtain:

1√
𝑛𝜋

𝑒−𝑟2
𝑛 (83)

This gives us the essence of the Gaussian form: the probability decreases 

exponentially with the square of the deviation. Converting to standard notation 

with 𝑥 representing the deviation from the mean value 𝑋, and using a parameter ℎ 

related to the width of the distribution:

𝑃(𝑥) = ℎ√
𝜋

𝑒−ℎ2𝑥2𝑑𝑥 (84)

Where 𝑃(𝑥)𝑑𝑥 represents the probability of finding a deviation between 𝑥 and 𝑥 +
𝑑𝑥.

9.b. Standard Deviation of the Gaussian Distribution

The standard deviation provides a measure of the typical spread of values in the 

distribution. For a Gaussian distribution, we find the standard deviation by 

calculating:

𝜎2 = 1
𝑁

∫
∞

−∞

𝑁ℎ√
𝜋

𝑒−ℎ2𝑥2𝑥2 𝑑𝑥 = ℎ√
𝜋

∫
∞

−∞
𝑥2𝑒−ℎ2𝑥2 𝑑𝑥 (85)

Tip

Mathematical note

This integral can be evaluated using the formula:

∫
∞

−∞
𝑥2𝑛𝑒−𝑎𝑥2𝑑𝑥 = (2𝑛 − 1)!!

2𝑛𝑎𝑛 √𝜋
𝑎

(86)

where (2𝑛 − 1)!! = (2𝑛 − 1)(2𝑛 − 3)…(3)(1)

This integral equals 
√

𝜋
2ℎ3 , giving us:
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𝜎2 = 1
2ℎ2 (87)

Therefore:

𝜎 = 1√
2ℎ

(88)

This allows us to rewrite the probability function in terms of the standard deviation:

𝑃(𝑥)𝑑𝑥 = 1√
2𝜋𝜎2

𝑒− 𝑥2
2𝜎2 𝑑𝑥 (89)

9.c. Areas Under the Gaussian Distribution Curve

A key practical question is: what fraction of measurements will fall within certain 

limits? To answer this, we need to find the area under portions of the Gaussian curve.

The probability that a measurement falls between 0 and 𝑥 is:

∫
𝑥

0

1√
2𝜋𝜎2

𝑒− 𝑥2
2𝜎2 𝑑𝑥 (90)

Warning

This integral can’t be evaluated in closed form (there’s no elementary 

antiderivative). We must use numerical methods or look up values in tables.

This integral has been calculated numerically and tabulated. The table below shows 

these probabilities for different values of 𝑥/𝜎:

𝑥/𝜎 Probability of deviation between 0 and 𝑥
0.0 0.0

0.5 0.19

1.0 0.34

1.5 0.43

2.0 0.48

3.0 0.499

Python Image: Click Me!

import numpy as np

import matplotlib.pyplot as plt

from scipy import stats

import matplotlib.patches as patches

# Create the figure and axis

plt.figure(figsize=(10, 6))

ax = plt.subplot(111)

# Define the x range and calculate the Gaussian PDF

January 01, 2025 91 of 122



| Veillette, 2025

x = np.linspace(-4, 4, 1000)

sigma = 1.0

mu = 0.0

pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2/(2*sigma**2))

# Plot the Gaussian curve

plt.plot(x, pdf, 'k-', lw=2, label='Gaussian Distribution')

# Function to calculate the area (probability) between 0 and x_val

def area_between_0_and_x(x_val):

    return stats.norm.cdf(x_val) - stats.norm.cdf(0)

# Choose x/sigma value to illustrate - let's use x/sigma = 1.0

x_val = 1.0

# Fill the area from 0 to x_val

x_fill = np.linspace(0, x_val, 100)

y_fill = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x_fill-mu)**2/

(2*sigma**2))

plt.fill_between(x_fill, y_fill, color='skyblue', alpha=0.6)

# Add probability value text

prob = area_between_0_and_x(x_val)

plt.text(x_val/2, 0.15, f"Area = {prob:.3f}",

         ha='center', va='center', fontsize=12,

         bbox=dict(facecolor='white', alpha=0.8))

# Add x/sigma = 1.0 vertical line

plt.axvline(x=x_val, color='blue', linestyle='--', alpha=0.7)

plt.axvline(x=0, color='blue', linestyle='--', alpha=0.7)

# Annotate the endpoints

plt.annotate('x/σ = 0', xy=(0, 0), xytext=(0, -0.02),

             arrowprops=dict(arrowstyle='->'), ha='center')

plt.annotate(f'x/σ = {x_val}', xy=(x_val, 0), xytext=(x_val, -0.02),

             arrowprops=dict(arrowstyle='->'), ha='center')

# Add a small table showing values

table_data = [

    ['x/σ', 'Probability'],

    ['0.0', '0.000'],

    ['0.5', '0.192'],

    ['1.0', '0.341'],

    ['1.5', '0.433'],

    ['2.0', '0.477'],

    ['3.0', '0.499']

]

# Create the table in the upper right corner

table = plt.table(cellText=table_data, loc='upper right', 

cellLoc='center',
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                 colWidths=[0.1, 0.1], bbox=[0.7, 0.55, 0.28, 0.35])

table.auto_set_font_size(False)

table.set_fontsize(10)

table.scale(1, 1.5)

# Customize the plot

plt.grid(alpha=0.3)

plt.title('Area Under the Gaussian Distribution Curve', fontsize=14)

plt.xlabel('x/σ (Standard Deviations from Mean)', fontsize=12)

plt.ylabel('Probability Density', fontsize=12)

plt.xlim(-3, 3)

plt.ylim(-0.03, 0.45)

# Add a descriptive caption as text under the plot

plt.figtext(0.5, 0.01,

           "Figure A1.1: The shaded area represents the probability 

of a \n"

           "deviation falling between 0 and x=1σ (34.1% of total 

area).",

           ha='center', fontsize=11)

# Add an explanation of the concept

plt.text(-2.8, 0.3,

        "The probability that a measurement\n"

        "falls between 0 and x is given by:\n"

        r"$\int_0^x \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{t^2}

{2\sigma^2}}dt$",

        fontsize=10, bbox=dict(facecolor='lightyellow', alpha=0.9))

plt.tight_layout(rect=[0, 0.03, 1, 0.97])

plt.savefig('gaussian_area.svg', dpi=300)

plt.show()

Figure 14:  The shaded area under the Gaussian distribution curve represents the 

probability of a deviation falling between 0 and x. This integral cannot be evaluated 

in closed form and must be computed numerically.
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For the probability that a measurement falls within ±𝑥/𝜎 of the mean (the symmetric 

interval), we double these values.

These probabilities form the foundation of statistical inference. When we make 

statements about the uncertainty of measurements, we often use these standard 

intervals - particularly the 68% confidence interval (±1𝜎) and the 95% confidence 

interval (±2𝜎).
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10. Appendix 2: The Principle of Least Squares

10.a. Least Squares and Sample Means

Important

When we make multiple measurements of a quantity that contains random 

fluctuation, we need a method to determine the most probable value. The 

principle of least squares provides this method by finding the value that 

minimizes the squared deviations from our measurements.

Let’s say we make 𝑁  measurements, 𝑥𝑖, of a quantity. To find the value 𝑋 whose 

deviations from our measurements are minimized according to the principle of least 

squares, we need:

∑ (𝑥𝑖 − 𝑋)2 = minimum (91)

Let’s denote the mean of the measurements as ̄𝑥. We can rewrite the sum of squared 

deviations as:

∑ (𝑥𝑖 − 𝑋)2 = ∑ [(𝑥𝑖 − ̄𝑥) + ( ̄𝑥 − 𝑋)]2 (92)

Expanding the squared term:

∑ (𝑥𝑖 − 𝑋)2 = ∑[(𝑥𝑖 − ̄𝑥)2 + ( ̄𝑥 − 𝑋)2 + 2(𝑥𝑖 − ̄𝑥)( ̄𝑥 − 𝑋)] (93)

The cross-term ∑(𝑥𝑖 − ̄𝑥) equals zero by definition of the mean, so:

∑ (𝑥𝑖 − 𝑋)2 = ∑ (𝑥𝑖 − ̄𝑥)2 + 𝑁( ̄𝑥 − 𝑋)2 (94)

Note

This expression clearly reaches its minimum value when 𝑋 = ̄𝑥, confirming that 

using the sample mean as the most probable value is consistent with the principle 

of least squares.

10.b. Fitting a Straight Line Using Least Squares

Important

Consider a set of observations (𝑥𝑖, 𝑦𝑖) that we wish to fit with a linear 

relationship:

𝑦 = 𝑚𝑥 + 𝑏 (95)

We’ll assume that uncertainty exists only in the 𝑦 values, and that all 

measurements have equal weight (we’ll address weighted least squares later).

For each observation, the deviation from our proposed line is:

𝛿𝑦𝑖 = 𝑦𝑖 − (𝑚𝑥𝑖 + 𝑏) (96)

According to the principle of least squares, we want to minimize the sum of the 

squares of these deviations:
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∑ (𝛿𝑦𝑖)
2 = ∑ [𝑦𝑖 − (𝑚𝑥𝑖 + 𝑏)]2 (97)

Expanding this expression:

∑ (𝛿𝑦𝑖)
2 = ∑[𝑦2

𝑖 + 𝑚2𝑥2
𝑖 + 𝑏2 − 2𝑚𝑥𝑖𝑦𝑖 − 2𝑏𝑦𝑖 + 2𝑚𝑥𝑖𝑏] (98)

Or more compactly:

𝑀 = ∑ 𝑦2
𝑖 + 𝑚2 ∑ 𝑥2

𝑖 + 𝑁𝑏2 + 2𝑚𝑏 ∑ 𝑥𝑖 − 2𝑚 ∑ 𝑥𝑖𝑦𝑖 − 2𝑏 ∑ 𝑦𝑖 (99)

Where 𝑀  represents the sum of squared deviations that we want to minimize.

Tip

To find the optimal values of 𝑚 and 𝑏, we take partial derivatives with respect to 

each parameter and set them equal to zero:

𝜕𝑀
𝜕𝑚

= 0 and 𝜕𝑀
𝜕𝑏

= 0 (100)

From the first condition:

2𝑚 ∑ 𝑥2
𝑖 + 2𝑏 ∑ 𝑥𝑖 − 2 ∑(𝑥𝑖𝑦𝑖) = 0 (101)

From the second condition:

2𝑁𝑏 + 2𝑚 ∑ 𝑥𝑖 − 2 ∑ 𝑦𝑖 = 0 (102)

Solving these equations simultaneously gives us:

𝑚 = 𝑁 ∑(𝑥𝑖𝑦𝑖) − ∑ 𝑥𝑖 ∑ 𝑦𝑖

𝑁 ∑ 𝑥2
𝑖 − (∑ 𝑥𝑖)

2 (103)

𝑏 = ∑ 𝑥2
𝑖 ∑ 𝑦𝑖 − ∑ 𝑥𝑖 ∑(𝑥𝑖𝑦𝑖)
𝑁 ∑ 𝑥2

𝑖 − (∑ 𝑥𝑖)
2 (104)

Important

Having determined the “best fit” line, we need to quantify the uncertainty in our 

calculated parameters. Since 𝑚 and 𝑏 are computed from measurements with 

uncertainty, we can calculate their standard deviations.

For the standard deviation of each 𝑦𝑖 value from our fitted line, we use:

𝑆𝑦 = √∑ (𝛿𝑦𝑖)
2

𝑁 − 2
(105)

Note

The denominator uses 𝑁 − 2 rather than 𝑁  because we’ve estimated two 

parameters (𝑚 and 𝑏) from our data, reducing our degrees of freedom.
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The standard deviations of the slope and intercept are then:

𝑆𝑚 = 𝑆𝑦√
𝑁

𝑁 ∑ 𝑥2
𝑖 − (∑ 𝑥𝑖)

2 (106)

𝑆𝑏 = 𝑆𝑦√
∑ 𝑥2

𝑖

𝑁 ∑ 𝑥2
𝑖 − (∑ 𝑥𝑖)

2 (107)

Tip

These expressions provide statistical measures of uncertainty in our fitted 

parameters. When reporting results, we typically state values as 𝑚 ± 𝑆𝑚 and 𝑏 ±
𝑆𝑏, indicating that the true parameter has about a 68% probability of falling 

within one standard deviation of our estimate.

10.c. Weighted Least Squares

Important

When measurements have different levels of precision, it makes sense to give 

more weight to more precise measurements. This approach is called weighted 

least squares.

10.c.i. Weighted Mean of Observations:

Note

If we have independently measured quantities 𝑥𝑖, each with a standard deviation 

𝑆𝑖, the weighted mean is:

̄𝑥 =
∑(𝑥𝑖/𝑆2

𝑖 )
∑(1/𝑆2

𝑖 )
(108)

The standard deviation of this weighted mean is:

𝑆2 =
∑((𝑥𝑖 − ̄𝑥)2/𝑆2

𝑖 )
(𝑁 − 1) ∑(1/𝑆2

𝑖 )
(109)

10.c.ii. Straight-Line Fitting with Weighted Least Squares:

Important

For observations with unequal precision, we modify our least squares approach 

by assigning weights. If the 𝑦 values have varying precision, but the 𝑥 values are 

considered exact, the equations for the slope and intercept become:

𝑚 = ∑ 𝑤𝑖 ∑ 𝑤𝑖𝑥𝑖𝑦𝑖 − ∑ 𝑤𝑖𝑥𝑖 ∑ 𝑤𝑖𝑦𝑖

∑ 𝑤𝑖 ∑ 𝑤𝑖𝑥2
𝑖 − (∑ 𝑤𝑖𝑥𝑖)

2 (110)
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𝑏 = ∑ 𝑤𝑖𝑦𝑖 ∑ 𝑤𝑖𝑥2
𝑖 − ∑ 𝑤𝑖𝑥𝑖 ∑ 𝑤𝑖𝑥𝑖𝑦𝑖

∑ 𝑤𝑖 ∑ 𝑤𝑖𝑥2
𝑖 − (∑ 𝑤𝑖𝑥𝑖)

2 (111)

Where 𝑤𝑖 represents the weight of each observation, calculated as:

𝑤𝑖 = 1
𝑆2

𝑦𝑖
(112)

The weighted standard deviation about the best-fit line is:

𝑆𝑦 = √∑ 𝑤𝑖𝛿2
𝑖

𝑁 − 2
(113)

And the standard deviations of the slope and intercept are:

𝑆2
𝑚 =

𝑆2
𝑦

𝑊
(114)

𝑆2
𝑏 = 𝑆2

𝑦( 1
∑ 𝑤𝑖

+ ̄𝑥2

𝑊
) (115)

Where:

𝑊 = ∑(𝑤𝑖(𝑥𝑖 − ̄𝑥)2) (116)

And ̄𝑥 is the weighted mean of the 𝑥 values:

̄𝑥 = ∑ 𝑤𝑖𝑥𝑖
∑ 𝑤𝑖

(117)

Tip

Weighted least squares is particularly valuable when measurements come from 

different sources with varying precision. By accounting for these differences in 

precision, we ensure that our fitted parameters are not unduly influenced by less 

reliable data points.

Warning

When reporting results from weighted analyses, it’s important to specify that 

weighted methods were used and to explain the basis for the weights assigned. 

This transparency allows others to properly interpret and potentially reproduce 

your analysis.
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11. Appendix 3: Introduction to Jupyter and Python for Data Analysis

11.a. The Power of Computational Tools in Modern Physics

Modern physics laboratories have been transformed by computational tools that 

allow for efficient data processing, powerful visualizations, and sophisticated 

statistical analysis. Two of the most valuable tools in a physicist’s computational 

toolkit are Python and Jupyter Notebooks.

Note

This appendix assumes no prior programming experience. We’ll start with the 

fundamentals and build toward practical applications for physics laboratory data 

analysis.

11.b. Getting Started with Python

Python has become the de facto standard programming language for scientific 

computing due to its readability, extensive scientific libraries, and supportive 

community.

11.b.i. Installing Python:

Before diving into coding, you’ll need to set up a Python environment:

Tip

The easiest way to get started is by installing Anaconda, a distribution that 

includes Python, Jupyter, and many scientific packages. Download it from 

anaconda.com.

Once installed, you can verify your installation by opening a terminal (Command 

Prompt on Windows, Terminal on macOS/Linux) and typing:

python --version

11.b.ii. Python Fundamentals:

Python is a high-level, interpreted programming language known for its clear syntax. 

Let’s explore some basics:

Variables and Data Types:

# Numbers

mass = 9.8  # A floating-point number (decimal)

count = 5   # An integer

# Strings (text)

element = "Hydrogen"

# Boolean values

is_valid = True
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# Lists (ordered collections)

readings = [9.81, 9.79, 9.82, 9.80]

# Printing values

print(f"The mass is {mass} kg")

print(f"We took {count} measurements")

print(f"The mean of our readings is {sum(readings)/len(readings)}")

Basic Math Operations:

Python handles mathematical operations naturally:

# Basic arithmetic

a = 10

b = 3

print(a + b)  # Addition: 13

print(a - b)  # Subtraction: 7

print(a * b)  # Multiplication: 30

print(a / b)  # Division: 3.3333...

print(a ** b) # Exponentiation: 1000

print(a % b)  # Modulo (remainder): 1

# Using the math library for more advanced functions

import math

angle = math.pi/4  # 45 degrees in radians

print(math.sin(angle))  # Sine function

print(math.sqrt(16))    # Square root: 4.0

Control Flow:

Python uses indentation to define code blocks for conditions and loops:

# Conditional statements

temperature = 22.5

if temperature > 25:

    print("It's warm")

elif temperature < 15:

    print("It's cold")

else:

    print("It's a pleasant temperature")

# Loops

print("Measuring temperatures:")

temperatures = [22.1, 22.4, 22.3, 22.5, 22.2]

for temp in temperatures:

    print(f"Reading: {temp}°C")

# While loops

count = 0

while count < 5:
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    print(f"Count: {count}")

    count += 1  # Shorthand for count = count + 1

Warning

Indentation in Python is not just for readability—it’s how Python identifies code 

blocks. Inconsistent indentation will cause syntax errors.

Functions:

Functions allow you to encapsulate reusable code blocks:

def calculate_kinetic_energy(mass, velocity):

    """Calculate kinetic energy using the formula E = 1/2 * m * v^2."""

    return 0.5 * mass * velocity**2

# Using the function

mass = 0.5  # kg

velocity = 10  # m/s

energy = calculate_kinetic_energy(mass, velocity)

print(f"The kinetic energy is {energy} J")

Note

The triple-quoted string after the function definition is called a “docstring.” It 

documents the function’s purpose and is good practice in scientific code.

11.c. Scientific Computing Libraries

Python’s real power for physics comes from its scientific computing ecosystem:

11.c.i. NumPy: Numerical Python:

NumPy provides support for arrays, matrices, and many mathematical functions:

import numpy as np

# Creating arrays

data = np.array([1.2, 2.3, 3.4, 4.5, 5.6])

print(f"Mean: {np.mean(data)}")

print(f"Standard deviation: {np.std(data)}")

# Array operations (vectorized calculations)

scaled_data = 2 * data  # Multiplies each element by 2

shifted_data = data + 10  # Adds 10 to each element

# Creating a range of values (useful for x-axes)

time = np.linspace(0, 10, 100)  # 100 points from 0 to 10

position = 4.9 * time**2  # Position in free fall

11.c.ii. Matplotlib: Visualization:

Matplotlib creates publication-quality graphs:
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import matplotlib.pyplot as plt

# Simple plot

plt.figure(figsize=(8, 6))  # Set figure size in inches

plt.plot(time, position, 'b-', label='Position')  # 'b-' means blue line

plt.xlabel('Time (s)')

plt.ylabel('Position (m)')

plt.title('Free Fall Motion')

plt.grid(True)

plt.legend()

plt.show()

# Scatter plot with error bars

x = np.array([1, 2, 3, 4, 5])

y = np.array([2.1, 3.9, 6.2, 7.8, 10.1])

y_error = np.array([0.2, 0.3, 0.2, 0.4, 0.3])

plt.figure(figsize=(8, 6))

plt.errorbar(x, y, yerr=y_error, fmt='ro', capsize=5, 

label='Measurements')

plt.xlabel('Input Variable')

plt.ylabel('Output Variable')

plt.title('Experiment Results with Error Bars')

plt.grid(True)

plt.legend()

plt.show()

11.c.iii. SciPy: Scientific Python:

SciPy extends NumPy with additional scientific functionality:

from scipy import stats

from scipy.optimize import curve_fit

# Linear regression

slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)

print(f"Slope: {slope:.4f} ± {std_err:.4f}")

print(f"Intercept: {intercept:.4f}")

print(f"R-squared: {r_value**2:.4f}")

# Curve fitting

def model_func(x, a, b):

    """Model y = a*x^b."""

    return a * x**b

params, params_covariance = curve_fit(model_func, x, y)

a, b = params

print(f"Fitted parameters: a = {a:.4f}, b = {b:.4f}")

11.c.iv. Pandas: Data Manipulation:

Pandas excels at handling structured data like CSV files:
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import pandas as pd

# Reading data from CSV file

df = pd.read_csv('experiment_data.csv')

print(df.head())  # Print first few rows

# Basic statistics

print(df.describe())

# Selecting columns

time_data = df['Time']

position_data = df['Position']

# Filtering data

filtered_data = df[df['Temperature'] > 25]

11.d. Introduction to Jupyter Notebooks

Jupyter Notebooks provide an interactive environment that combines code, text, 

equations, and visualizations.

11.d.i. Starting Jupyter:

To start Jupyter Notebook, open your terminal and run:

jupyter notebook

This will open a web browser showing the Jupyter dashboard, where you can create 

or open notebooks.

11.d.ii. Notebook Components:

A Jupyter Notebook consists of cells that can contain:

1. Code - Python code that can be executed

2. Markdown - Text with formatting, equations, and links

3. Raw - Plain text without formatting

Tip

Press Shift+Enter to run a cell and move to the next one. Press Ctrl+Enter to 

run a cell and stay on it.

11.d.iii. Markdown and LaTeX in Jupyter:

Jupyter supports Markdown for text formatting and LaTeX for equations:

# Heading 1

## Heading 2

_italic text_

**bold text**
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- Bullet point

- Another point

1. Numbered item

2. Another item

[Link text](https://example.com)

Inline equation: $E = mc^2$

Display equation:

$$F = G\frac{m_1 m_2}{r^2}$$

Important

The ability to mix explanatory text, mathematical equations, code, and 

visualizations makes Jupyter ideal for documenting laboratory experiments and 

analysis.

11.e. Practical Example: Analyzing Pendulum Data

Let’s walk through a complete example of analyzing pendulum period data using 

Python and Jupyter.

import numpy as np

import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

import pandas as pd

# Sample data: pendulum length (m) and period (s)

length = np.array([0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 

0.50])

period = np.array([0.64, 0.78, 0.90, 1.01, 1.11, 1.19, 1.28, 1.36, 

1.43])

period_error = np.array([0.02, 0.02, 0.02, 0.03, 0.03, 0.03, 0.03, 0.04, 

0.04])

# Create a DataFrame for better data organization

data = pd.DataFrame({

    'Length (m)': length,

    'Period (s)': period,

    'Period Error (s)': period_error

})

print("Pendulum Data:")

print(data)

# Calculate the square of the period

data['Period² (s²)'] = data['Period (s)']**2

data['Period² Error (s²)'] = 2 * data['Period (s)'] * data['Period Error 

(s)']

# Define the theoretical model: T² = (4π²/g) * L
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def model_function(L, g):

    """Model the relationship T² = (4π²/g) * L."""

    return (4 * np.pi**2 / g) * L

# Perform the curve fitting

params, params_covariance = curve_fit(

    model_function,

    data['Length (m)'],

    data['Period² (s²)'],

    sigma=data['Period² Error (s²)'],

    absolute_sigma=True

)

# Extract the fitted parameter (g) and its uncertainty

g_fitted = params[0]

g_error = np.sqrt(params_covariance[0, 0])

print(f"\nFitted value of g: {g_fitted:.3f} ± {g_error:.3f} m/s²")

# Create a nice plot

plt.figure(figsize=(10, 6))

# Plot the data points with error bars

plt.errorbar(

    data['Length (m)'],

    data['Period² (s²)'],

    yerr=data['Period² Error (s²)'],

    fmt='o',

    markersize=6,

    capsize=3,

    label='Experimental data'

)

# Plot the best fit line

L_values = np.linspace(0, 0.55, 100)

T2_fitted = model_function(L_values, g_fitted)

plt.plot(L_values, T2_fitted, 'r-',

         label=f'Best fit: T² = (4π²/g) * L, g = {g_fitted:.3f} m/s²')

# Add the expected line for g = 9.81 m/s²

T2_expected = model_function(L_values, 9.81)

plt.plot(L_values, T2_expected, 'g--',

         label=f'Expected: g = 9.81 m/s²')

# Customize the plot

plt.xlabel('Pendulum Length (m)')

plt.ylabel('Period² (s²)')

plt.title('Pendulum Period² vs. Length')

plt.grid(True, alpha=0.3)

plt.legend()

plt.tight_layout()

plt.show()
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# Calculate the residuals (difference between observed and fitted 

values)

data['Fitted Period² (s²)'] = model_function(data['Length (m)'], 

g_fitted)

data['Residual (s²)'] = data['Period² (s²)'] - data['Fitted Period² 

(s²)']

# Plot the residuals

plt.figure(figsize=(10, 4))

plt.errorbar(

    data['Length (m)'],

    data['Residual (s²)'],

    yerr=data['Period² Error (s²)'],

    fmt='o',

    markersize=6,

    capsize=3

)

plt.axhline(y=0, color='r', linestyle='-')

plt.xlabel('Pendulum Length (m)')

plt.ylabel('Residual (s²)')

plt.title('Residuals of the Fit')

plt.grid(True, alpha=0.3)

plt.tight_layout()

plt.show()

Note

This example demonstrates how to:

• Organize experimental data

• Propagate uncertainties

• Fit a theoretical model to data

• Visualize results with appropriate error bars

• Compare fitted results with expected values

• Analyze residuals to evaluate the quality of the fit

11.f. Data Analysis Workflow for Physics Experiments

When approaching data analysis for physics experiments, a systematic workflow is 

helpful:

1. Data Import and Organization

• Import raw data (CSV, Excel, etc.)

• Organize into appropriate data structures

• Perform basic validation and cleaning

2. Exploratory Analysis

• Calculate basic statistics (mean, standard deviation)

• Create initial visualizations

• Identify potential outliers or issues
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3. Data Transformation

• Convert units if necessary

• Create derived quantities

• Apply appropriate transformations (e.g., linearization)

4. Model Fitting

• Define theoretical model

• Perform regression or curve fitting

• Extract parameters and their uncertainties

5. Visualization

• Create publication-quality plots

• Include error bars and uncertainty ranges

• Compare experimental results with theoretical predictions

6. Result Analysis and Interpretation

• Evaluate goodness of fit

• Analyze residuals

• Calculate derived quantities with proper uncertainty propagation

• Compare results with established values or theories

Tip

For reproducibility, document each step of your analysis in your Jupyter 

Notebook with clear markdown explanations. This makes it easier to trace your 

reasoning and catch potential errors.

11.g. Tips for Efficient Data Analysis

11.g.i. Coding Best Practices:

1. Comment your code

# Calculate gravitational acceleration from the slope

g = 4 * np.pi**2 / slope  # Converting from T² vs L to g

1. Use descriptive variable names

# Good

time_of_flight = distance_fallen / initial_velocity

# Avoid

t = d / v

1. Structure your notebook logically

• Start with imports and setup

• Follow with data loading and processing

• Continue with analysis and visualization

• End with conclusions

11.g.ii. Data Visualization Tips:
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1. Always label your axes

plt.xlabel('Time (s)')

plt.ylabel('Displacement (m)')

1. Include units in labels

plt.xlabel('Pressure (kPa)')

1. Use appropriate scales

plt.xscale('log')  # For logarithmic scale

1. Add error bars when possible

plt.errorbar(x, y, yerr=y_errors, fmt='o')

1. Include a legend when plotting multiple series

plt.plot(x, y1, 'b-', label='Measured')

plt.plot(x, y2, 'r--', label='Theoretical')

plt.legend()

11.g.iii. Handling Experimental Uncertainties:

1. Propagate uncertainties correctly

# For y = a*x + b

y_error = np.sqrt((a_error * x)**2 + b_error**2)

1. Use weighted fits when measurement uncertainties vary

weights = 1 / (y_errors**2)

params, params_covariance = curve_fit(model, x, y, sigma=y_errors, 

absolute_sigma=True)

1. Check residuals for patterns

residuals = y_data - model(x_data, *params)

plt.plot(x_data, residuals, 'o')

11.h. Advanced Topics

11.h.i. Automating Repetitive Tasks:

When processing multiple datasets with similar structure, functions can help 

automate the work:

def analyze_pendulum_data(filepath, output_folder=None):

    """Analyze pendulum data from a CSV file.

    Parameters:

    -----------

    filepath : str

        Path to the CSV file containing length and period data

    output_folder : str, optional

        Folder to save output plots

    Returns:
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    --------

    dict

        Dictionary containing analysis results

    """

    # Load data

    data = pd.read_csv(filepath)

    # Perform analysis

    # ...

    # Create and save plots

    # ...

    return results

11.h.ii. Saving and Sharing Your Work:

Jupyter Notebooks can be shared in various ways:

1. Export as HTML, PDF, or other formats

• In Jupyter: File > Export Notebook As…

2. Version control with Git/GitHub

• Notebooks are text files that can be tracked with version control

• GitHub renders notebooks directly in the browser

3. Interactive sharing with Binder

• Share executable versions of your notebooks online

Important

When sharing your analysis, include the raw data files or clear instructions on 

how to obtain them.

11.i. Glossary

11.j. Problems

Exercise 70: 

A student measures the terminal velocity of different objects falling through a 

viscous fluid. The data is stored in a CSV file with columns for ‘Radius (mm)’, 

‘Mass (g)’, and ‘Velocity (cm/s)’. Write Python code to:

a. Load the data b. Convert to SI units c. Test if the velocity is proportional to the 

square of the radius, as predicted by Stokes’ Law d. Determine the viscosity of the 

fluid
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Exercise 71: 

Using the pendulum example from this appendix, modify the code to:

a. Add a random error to each period measurement b. Run the analysis 1000 times 

with different random errors c. Create a histogram of the resulting g values d. 

Determine if the uncertainty estimated by curve_fit matches the standard 

deviation of your Monte Carlo simulation

Exercise 72: 

A student measures the distance vs. time for a cart rolling down an inclined plane. 

Write code to:

a. Create a scatter plot of distance vs. time b. Fit both a linear model (𝑑 = 𝑣𝑡) and 

a quadratic model (𝑑 = 1
2𝑎𝑡2) c. Compare the models using residual analysis d. 

Determine which model better describes the motion

Exercise 73: 

Create a Jupyter notebook that demonstrates the propagation of uncertainties for 

different mathematical operations (addition, multiplication, powers, etc.) using 

both analytical formulas and Monte Carlo simulation.

Exercise 74: 

Using the least squares method described in Appendix 2, implement the weighted 

least squares algorithm in Python and compare its results with those from SciPy’s 

curve_fit function.
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12. Appendix 4: Model Experiment

12.-.i. Experiment Design:

System:

For our experiment, we have assembled the following apparatus:

• A helical spring suspended from a rigid laboratory stand with vibration-

dampening clamps

• A precision-machined pan for holding weights, attached to the lower end of the 

spring via a low-friction hook

• A set of calibrated brass weights (class M1 standard, ±0.1mg tolerance)

• A digital stopwatch with millisecond precision (systematic uncertainty ±0.01s)

• A meter rule with millimeter graduations for measuring displacements

• A digital camera capable of high-speed recording (120fps) for motion analysis 

verification

Model:

According to fundamental principles of classical mechanics, a spring’s extension is 

proportional to the applied load when operating within its elastic limit (Hooke’s 

Law). For a mass-spring system undergoing simple harmonic motion, the period of 

oscillation (T) relates to the suspended mass (m) through the equation:

𝑇 = 2𝜋√𝑚
𝑘

(118)

Where k represents the spring constant measured in N/m (or equivalently, kg/s²).

Requirement:

Our experimental objective is to determine the spring constant k with an uncertainty 

not exceeding 10%. This precision requirement guides our experimental design and 

measurement protocols.

Experiment Design:

We employ a systematic approach to experimental design following established best 

practices:

1. System identification and isolation: We carefully isolate the spring-mass 

system, minimizing external influences such as air currents and vibrations by 

using a vibration-dampening table and conducting measurements in a 

temperature-controlled environment.

2. Variable selection and control: We identify two key measurable variables—

the load m (independent variable we systematically vary) and the period of 

oscillation T (dependent variable we measure).

3. Mathematical model transformation: To facilitate statistical analysis, we 

transform our physical model into a linear relationship:
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𝑇 = 2𝜋√𝑚
𝑘

(119)

Squaring both sides:

𝑇 2 = 4𝜋2

𝑘
𝑚 (120)

This can be represented in slope-intercept form:

𝑚 = 𝑘
4𝜋2 𝑇 2 + 𝑏 (121)

Where:

• Vertical axis variable = 𝑚
• Horizontal axis variable = 𝑇 2

• Slope = 𝑘
4𝜋2

• Intercept = 𝑏 (theoretically zero, but may reveal systematic effects)

This transformation allows us to determine k directly from the slope using linear 

regression techniques.

1. Measurement range optimization: We carefully consider:

• The available calibrated weights (0.05 kg to 0.50 kg)

• The spring’s elastic limit (determined through preliminary testing to be 

approximately 0.60 kg)

• Practical constraints on timing oscillations (targeting relative timing 

uncertainty <1%)

• Signal-to-noise ratio optimization (larger masses produce longer periods, 

reducing relative timing uncertainty)

2. Uncertainty propagation analysis: For a 10% maximum uncertainty in k, we 

conduct uncertainty propagation analysis:

For time measurements with digital stopwatch uncertainty of ±0.01s, we need to 

minimize the relative uncertainty in period measurements. Since the uncertainty in 

T² is approximately twice the relative uncertainty in T, we require:

Δ𝑇
𝑇

< 0.05 (122)

For a conservative uncertainty estimate of ±0.02s per period measurement:

0.02 s
𝑇

< 0.05 (123)

Which yields:

𝑇 > 0.4  seconds (124)
To further reduce uncertainty, we time multiple oscillations (n=10) and calculate:

𝑇 = 𝑡𝑡𝑜𝑡𝑎𝑙
𝑛

(125)
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This reduces timing uncertainty by a factor of approximately √n.

Measurement Protocol:

We developed a comprehensive measurement protocol:

1. System calibration:

• Zero the digital scale used to verify weights

• Calibrate the digital stopwatch against a reference timekeeper

• Measure the unloaded spring length as reference

2. Data collection procedure:

• Attach the weight pan (mass recorded separately)

• Add calibrated weights incrementally

• For each load, displace the system 2 cm from equilibrium

• Release from rest and time 10 complete oscillations

• Repeat measurements three times per load setting

• Record ambient temperature and pressure

3. Data processing methodology:

• Calculate average period and associated uncertainty for each load

• Compute T² values and propagate uncertainties

• Plot m versus T² with error bars

• Perform weighted least-squares regression analysis using Python

This structured methodology ensures reproducibility and minimizes both random and 

systematic uncertainties in our measurements.

12.-.ii. Experimental Results:

Raw Measurements:

The measurements are presented in Table 1, with each entry including its associated 

uncertainty determined through statistical analysis of repeated measurements.

Load, m (kg) # of Osc. Time, t (s) Period, T (s) Period², T² (s²) ΔT² (s²)

0.10 ± 0.0001 10 8.20 ± 0.03 0.820 ± 0.003 0.672 0.005

0.15 ± 0.0001 10 9.80 ± 0.03 0.980 ± 0.003 0.960 0.006

0.20 ± 0.0001 10 10.70 ± 0.03 1.070 ± 0.003 1.145 0.006

0.25 ± 0.0001 10 11.50 ± 0.03 1.150 ± 0.003 1.323 0.007

0.30 ± 0.0001 10 12.50 ± 0.03 1.250 ± 0.003 1.563 0.008

0.35 ± 0.0001 10 13.00 ± 0.03 1.300 ± 0.003 1.690 0.008

0.40 ± 0.0001 10 13.80 ± 0.03 1.380 ± 0.003 1.904 0.008

0.45 ± 0.0001 10 14.50 ± 0.03 1.450 ± 0.003 2.103 0.009

0.50 ± 0.0001 10 15.20 ± 0.03 1.520 ± 0.003 2.310 0.009
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Table 2:  Variation of Oscillation Period with Load

Computational Analysis:

We performed data analysis using Python with NumPy and SciPy libraries. Below is 

the analysis script used to process our experimental data:

import numpy as np

import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

from scipy import stats

# Load experimental data

masses = np.array([0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 

0.50])

periods_squared = np.array([0.672, 0.960, 1.145, 1.323, 1.563, 1.690, 

1.904, 2.103, 2.310])

uncertainties = np.array([0.005, 0.006, 0.006, 0.007, 0.008, 0.008, 

0.008, 0.009, 0.009])

# Define linear model function

def linear_model(x, slope, intercept):

    return slope * x + intercept

# Perform weighted least-squares fit

weights = 1 / (uncertainties**2)

popt, pcov = curve_fit(linear_model, periods_squared, masses,

                        sigma=uncertainties, absolute_sigma=True)

slope, intercept = popt

slope_err, intercept_err = np.sqrt(np.diag(pcov))

# Calculate spring constant and its uncertainty

k = 4 * np.pi**2 * slope

k_err = 4 * np.pi**2 * slope_err

# Calculate coefficient of determination (R²)

residuals = masses - linear_model(periods_squared, *popt)

ss_res = np.sum(residuals**2)

ss_tot = np.sum((masses - np.mean(masses))**2)

r_squared = 1 - (ss_res / ss_tot)

# Generate prediction intervals (95% confidence)

t_value = stats.t.ppf(0.975, len(masses)-2)

prediction_intervals = t_value * np.sqrt(1/weights +

                      (periods_squared - np.mean(periods_squared))**2 /

                      np.sum(weights * (periods_squared - 

np.mean(periods_squared))**2))

# Plot results with error bars and confidence intervals

plt.figure(figsize=(10, 7))

plt.errorbar(periods_squared, masses, xerr=uncertainties, fmt='o',
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             markersize=6, capsize=3, label='Experimental data')

# Plot best fit line

x_fit = np.linspace(0.5, 2.5, 100)

plt.plot(x_fit, linear_model(x_fit, *popt), 'r-',

         label=f'Best fit: m = ({slope:.4f}±{slope_err:.4f})T² + 

({intercept:.4f}±{intercept_err:.4f})')

# Plot prediction intervals

plt.fill_between(periods_squared,

                 linear_model(periods_squared, *popt) - 

prediction_intervals,

                 linear_model(periods_squared, *popt) + 

prediction_intervals,

                 alpha=0.2, color='gray', label='95% confidence 

interval')

plt.xlabel('Period squared, T² (s²)')

plt.ylabel('Mass, m (kg)')

plt.title('Determination of Spring Constant via Oscillation Method')

plt.grid(True, alpha=0.3)

plt.legend()

plt.savefig('spring_constant_analysis.png', dpi=300)

plt.show()

print(f"Spring constant k = {k:.2f} ± {k_err:.2f} N/m")

print(f"Coefficient of determination R² = {r_squared:.6f}")

print(f"Y-intercept = {intercept:.4f} ± {intercept_err:.4f} kg")

The analysis yielded a coefficient of determination (R²) of 0.9996, indicating an 

excellent fit to our linear model.

Results Visualization:

Figure 1 shows the results of our computational analysis, including the experimental 

data points with uncertainties, the best-fit line, and the 95% confidence intervals 

derived from our statistical analysis.
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Figure 15:  Plot of mass versus period squared showing experimental data points with 

uncertainties, best-fit line determined by weighted least-squares regression, and 95% 

confidence intervals.

Parameter Determination:

From our computational analysis, we obtained:

Best-fit parameters:

• Slope = 0.2486 ± 0.0045 kg/s²

• Intercept = −0.0776 ± 0.0064 kg

Derived spring constant:

𝑘 = 4𝜋2 × slope = 4𝜋2 × 0.2486 = 9.81  N \/ m (126)

Uncertainty propagation:

Δ𝑘 = 4𝜋2 × Δ slope = 4𝜋2 × 0.0045 = 0.18  N \/ m (127)

Our final result is:

𝑘 = 9.81 ± 0.18  N \/ m (128)

This gives us a relative uncertainty of 1.8%, significantly better than our target of 

10%.

12.-.iii. Extended Procedure:

Our experimental procedure followed these detailed steps:

1. Equipment preparation and verification:
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• The spring was examined for damage or permanent deformation

• The spring was pre-stretched with a 0.6 kg load for 30 minutes to 

minimize hysteresis effects

• Weight calibration was verified using an analytical balance (±0.1 mg 

precision)

• The support stand was secured to a vibration-isolated optical table

• Level adjustment was performed using a spirit level

2. Environmental control:

• Room temperature maintained at 22.0 ± 0.5°C

• Airflow minimized by closing vents and doors

• Barometric pressure recorded (101.3 kPa)

• Relative humidity monitored (45%)

3. Preliminary measurements:

• The unloaded length of the spring was measured (15.3 ± 0.1 cm)

• The mass of the empty pan was determined (0.023 ± 0.0001 kg)

• The spring’s elastic limit was assessed through static loading tests

• Natural frequency of the laboratory bench was measured to identify 

potential resonance issues

4. Measurement procedure:

• The pan was attached to the spring and allowed to reach equilibrium

• The initial position was marked on a background grid for reference

• Calibrated weights were added incrementally (0.05 kg steps)

• For each load configuration:

‣ The system was displaced 2.0 cm downward using a release 

mechanism

‣ A digital stopwatch was used to time 10 complete oscillations

‣ The measurement was repeated three times with brief pauses 

between trials

‣ The system was allowed to return to equilibrium before the next trial

‣ Any observed damping was noted qualitatively

• High-speed video (120 fps) recorded select trials for verification

• Between measurement sets, the spring was inspected for signs of fatigue

5. Data analysis methodology:

• Statistical treatment applied to repeated measurements:

‣ Mean values calculated for each measurement set

‣ Standard deviation determined as a measure of random uncertainty

‣ Standard error of the mean computed for each average period

• Systematic uncertainties identified and quantified:

‣ Stopwatch calibration uncertainty (±0.01s)

‣ Mass calibration uncertainty (±0.0001 kg)
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‣ Human reaction time variation (minimized through training)

• Computational analysis performed using Python libraries:

‣ NumPy for numerical operations

‣ SciPy.optimize for curve fitting with weighted least-squares

‣ Matplotlib for visualization with error representation

• Uncertainty propagation calculated following standard error propagation 

formulas

• Goodness-of-fit evaluated using coefficient of determination (R²)

• Residual analysis performed to check for systematic patterns

6. Verification methods:

• Selected trials analyzed frame-by-frame using video analysis software

• Static loading tests performed to cross-verify spring constant

• Amplitude independence verified by varying initial displacement

• Zero-crossing method used as alternative timing approach for validation

This comprehensive procedure ensured high-quality data collection with minimized 

uncertainties and thorough validation of our results.

12.-.iv. Report:

12.a. MEASUREMENT OF A SPRING CONSTANT BY AN OSCILLATION METHOD

Introduction:

The stiffness of a spring, characterized by its spring constant (k), represents a 

fundamental physical parameter with applications ranging from engineering design 

to theoretical mechanics. For an elastic spring operating within Hooke’s Law, the 

period of oscillation (T) of a suspended mass (m) follows the relationship:

𝑇 = 2𝜋√𝑚
𝑘

(129)

This experiment employs modern computational methods to determine the spring 

constant with high precision, aiming for an uncertainty below 10%. By transforming 

the equation into a linear form:

𝑚 = 𝑘
4𝜋2 𝑇 2 + 𝑏 (130)

We can apply weighted least-squares regression analysis to determine k from the 

slope of the m vs. T² relationship, while also investigating potential systematic effects 

revealed by any non-zero intercept.

Procedure:

We established a precision measurement system consisting of a helical spring 

suspended from a vibration-isolated support structure (Figure 2). The experimental 

apparatus included:
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Figure 16:  Schematic diagram of the experimental apparatus showing the spring 

suspension system, digital measurement tools, and vibration isolation measures.

The apparatus featured:

• A class-2 helical spring (wire diameter 0.8mm, mean coil diameter 10mm, 35 

active coils)

• Calibrated M1-class brass weights (0.05kg to 0.50kg, ±0.1mg tolerance)

• Lightweight aluminum pan (23.0g) with three-point suspension

• Digital stopwatch with millisecond resolution

• Meter rule with vernier scale for displacement measurements

• High-speed camera (120fps) for motion verification

• Temperature and humidity monitoring systems

• Vibration-isolated optical table

Our measurement protocol involved:
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1. Suspending the spring from the support stand and attaching the weight pan

2. Adding calibrated weights incrementally from 0.10kg to 0.50kg

3. Displacing the system 2.0cm from equilibrium using a release mechanism

4. Timing ten complete oscillations for each load configuration

5. Repeating measurements three times per configuration to assess repeatability

6. Recording environmental conditions throughout the experiment

Data analysis employed numerical methods using Python with scientific computing 

libraries, applying weighted least-squares regression to determine the spring constant 

and its associated uncertainty.

Results:

The measured relationship between load and oscillation period is presented in Table 

2, with uncertainties determined through statistical analysis of repeated 

measurements.

Load, m (kg) # of Osc. Time, t (s) Period, T (s) Period², T² (s²)

0.10 ± 0.0001 10 8.20 ± 0.03 0.820 ± 0.003 0.672 ± 0.005

0.15 ± 0.0001 10 9.80 ± 0.03 0.980 ± 0.003 0.960 ± 0.006

0.20 ± 0.0001 10 10.70 ± 0.03 1.070 ± 0.003 1.145 ± 0.006

0.25 ± 0.0001 10 11.50 ± 0.03 1.150 ± 0.003 1.323 ± 0.007

0.30 ± 0.0001 10 12.50 ± 0.03 1.250 ± 0.003 1.563 ± 0.008

0.35 ± 0.0001 10 13.00 ± 0.03 1.300 ± 0.003 1.690 ± 0.008

0.40 ± 0.0001 10 13.80 ± 0.03 1.380 ± 0.003 1.904 ± 0.008

0.45 ± 0.0001 10 14.50 ± 0.03 1.450 ± 0.003 2.103 ± 0.009

0.50 ± 0.0001 10 15.20 ± 0.03 1.520 ± 0.003 2.310 ± 0.009

Table 3:  Variation of Oscillation Period with Load

Computational analysis of this data using weighted least-squares regression yielded:

𝑘 = 9.81 ± 0.18  N \/ m (131)

With a coefficient of determination R² = 0.9996, demonstrating excellent agreement 

with our linear model. Figure 3 presents the graphical analysis of our results.
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Figure 17:  Statistical analysis of the T² vs m relationship showing experimental data 

points with error bars, weighted least-squares regression line, and 95% confidence 

intervals.

Discussion:

Our computational approach yielded a spring constant value of k = 9.81 ± 0.18 N/m, 

with a relative uncertainty of 1.8%—significantly better than our target of 10%. The 

high coefficient of determination (R² = 0.9996) confirms the excellent agreement 

between our experimental data and the theoretical model.

The regression analysis revealed a small negative intercept of −0.0776 ± 0.0064 kg 

(approximately −78 g), which differs significantly from zero. Since our model is 𝑚 =
𝑘

4𝜋2 𝑇 2 + 𝑏, a negative intercept indicates that additional mass participates in the 

oscillation beyond the calibrated weights we recorded. Two plausible sources of this 

unaccounted mass include:

1. The effective mass contribution from the spring itself, which participates in the 

oscillation. For a uniform spring, theory predicts an effective mass contribution 

of approximately 1/3 of the spring’s total mass.

2. The weight pan’s mass (23.0 g), which was not incorporated into the load 

values presented in Table 2.

The combined contribution of the pan mass (23 g) plus an estimated spring effective 

mass (∼55 g, assuming a spring mass of ∼165 g) would total approximately 78 g—

consistent with our observed intercept magnitude. To investigate this effect further, 

we performed supplementary analysis by incorporating the pan mass and a 

theoretical spring effective mass into our calculations. This adjusted analysis yielded 
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consistent results for the spring constant but improved the intercept’s proximity to 

zero, supporting our hypothesis.

Conclusion:

The oscillation method, combined with modern computational analysis techniques, 

provides an accurate and precise means of determining spring constants. Our 

experiment achieved a final uncertainty of 1.8%, demonstrating the effectiveness of 

our experimental design and analysis methodology.

The negative intercept indicates the presence of unaccounted mass in the system—

specifically from the weight pan and the effective mass of the oscillating spring. The 

magnitude of the intercept (∼78 g) is consistent with these contributions. This 

observation highlights an important pedagogical point: real physical systems often 

contain subtle effects not captured in simplified models. Identifying and explaining 

these effects represents an important aspect of experimental physics.
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